• Med Eng Phys · Jan 2019

    Accuracy of 3D surface scanners for clinical torso and spinal deformity assessment.

    • Caroline A Grant, Melissa Johnston, Clayton J Adam, and J Paige Little.
    • Paediatric Spine Research Group, Institute of Health and Biomedical Innovation at Centre for Children's Health Research, Queensland University of Technology, Brisbane, Australia. Electronic address: ca.grant@qut.edu.au.
    • Med Eng Phys. 2019 Jan 1; 63: 63-71.

    AbstractExternally visible deformities are cosmetic features of great concern for Adolescent Idiopathic Scoliosis (AIS) patients. Current assessment techniques for AIS do not fully encompass the external deformity. A non-invasive method capable of capturing superficial anatomy, such as 3D scanning, would enable better qualitative and quantitative evaluation of cosmesis. This study aimed to quantify the accuracy of commonly available scanners, in assessing posterior asymmetry in AIS. The technique of 3D surface deviation analysis was proposed as a suitable method for comparing the models created by each scanner. Eight plaster cast moulds manufactured to create braces for AIS patients were used as test samples. Four 3D scanners were selected: Solutionix RexScan CS+; Artec Eva; Microsoft Kinect V1; iPhone with 123D Catch App. These scanners were selected from those available as representative of a range of scanning technologies. Each cast was scanned and 3D models created. A simulated rib hump measurement was obtained and the surface-to-surface deviations between the Solutionix scan and all other scans were determined. The Solutionix scanner is a metrology scanner of very high quality and so it was selected as the reference. Surface-to-surface deviations were calculated in the positive and negative directions separately to specifically identify size and volume inaccuracies created by the scans. Surface deviations showed excellent agreement between the Solutionix and the Eva with deviations of +0.17 ± 0.17 mm (Eva regions larger) and -0.20 ± 0.32 mm (Eva regions smaller) (mean±SD). The Kinect showed lower agreement (+1.58 ± 1.50 mm and -0.58 ± 0.58 mm). The iPhone scans were not able to be scaled to the correct size, so were excluded. Rib hump measurements with all scanners were within clinical measurement variability (±4.9 deg) of the known values. These commercially available 3D scanners are capable of imaging torso shape in 3D and deriving clinically relevant external deformity measures. The non-invasive 3D topographic information provided can be used to improve assessment of torso shape in spinal deformity patients.Copyright © 2018. Published by Elsevier Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…