-
Eur. J. Nucl. Med. Mol. Imaging · Apr 2018
Impact of improved attenuation correction featuring a bone atlas and truncation correction on PET quantification in whole-body PET/MR.
- Mark Oehmigen, Maike E Lindemann, Marcel Gratz, Julian Kirchner, Verena Ruhlmann, Lale Umutlu, Jan Ole Blumhagen, Matthias Fenchel, and Harald H Quick.
- High Field and Hybrid MR Imaging, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany. Mark.Oehmigen@uni-due.de.
- Eur. J. Nucl. Med. Mol. Imaging. 2018 Apr 1; 45 (4): 642-653.
PurposeRecent studies have shown an excellent correlation between PET/MR and PET/CT hybrid imaging in detecting lesions. However, a systematic underestimation of PET quantification in PET/MR has been observed. This is attributable to two methodological challenges of MR-based attenuation correction (AC): (1) lack of bone information, and (2) truncation of the MR-based AC maps (μmaps) along the patient arms. The aim of this study was to evaluate the impact of improved AC featuring a bone atlas and truncation correction on PET quantification in whole-body PET/MR.MethodsThe MR-based Dixon method provides four-compartment μmaps (background air, lungs, fat, soft tissue) which served as a reference for PET/MR AC in this study. A model-based bone atlas provided bone tissue as a fifth compartment, while the HUGE method provided truncation correction. The study population comprised 51 patients with oncological diseases, all of whom underwent a whole-body PET/MR examination. Each whole-body PET dataset was reconstructed four times using standard four-compartment μmaps, five-compartment μmaps, four-compartment μmaps + HUGE, and five-compartment μmaps + HUGE. The SUVmax for each lesion was measured to assess the impact of each μmap on PET quantification.ResultsAll four μmaps in each patient provided robust results for reconstruction of the AC PET data. Overall, SUVmax was quantified in 99 tumours and lesions. Compared to the reference four-compartment μmap, the mean SUVmax of all 99 lesions increased by 1.4 ± 2.5% when bone was added, by 2.1 ± 3.5% when HUGE was added, and by 4.4 ± 5.7% when bone + HUGE was added. Larger quantification bias of up to 35% was found for single lesions when bone and truncation correction were added to the μmaps, depending on their individual location in the body.ConclusionThe novel AC method, featuring a bone model and truncation correction, improved PET quantification in whole-body PET/MR imaging. Short reconstruction times, straightforward reconstruction workflow, and robust AC quality justify further routine clinical application of this method.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.