• J. Thorac. Cardiovasc. Surg. · May 2013

    Use of continuous flow ventricular assist devices in patients with heart failure and a normal ejection fraction: a computer-simulation study.

    • Francesco Moscato, Christian Wirrmann, Marcus Granegger, Farsad Eskandary, Daniel Zimpfer, and Heinrich Schima.
    • Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria. francesco.moscato@meduniwien.ac.at
    • J. Thorac. Cardiovasc. Surg.. 2013 May 1;145(5):1352-8.

    ObjectivesContinuous flow left ventricular assist devices are used in end-stage systolic heart failure. However, about one half of the patients with heart failure exhibit diastolic dysfunction with a normal ejection fraction. In the present study, the possible hemodynamic consequences of continuous flow left ventricular assist devices use for these patients were investigated.MethodsA previously developed cardiovascular model was modified to reproduce the peculiar hemodynamics of heart failure with a normal ejection fraction. The model was based on and validated with patient data derived from the published data. A continuous flow left ventricular assist device model was included and the hemodynamic effects of pump support evaluated at rest and during exercise.ResultsThe model accurately reproduced the published data both at rest and during exercise, leading to simulated hemodynamic values within the standard deviations of patient variability. At rest, pump support decreased the end-diastolic left ventricular pressure (6 vs 15 mm Hg) and volume (88 vs 135 mL). During exercise, maximal pump support substantially unloaded the left ventricle (end-diastolic pressure, 14 vs 35 mm Hg; volume, 133 vs 158 mL) and the pulmonary venous circulation (left atrial pressure, 12 vs 24 mm Hg) and resulted in a slight increase in cardiac output (11.7 vs 9.9 L/min).ConclusionsThe simulation results suggested that continuous flow left ventricular assist devices improve the hemodynamics in patients with heart failure and a normal ejection fraction. For an optimal use of continuous flow left ventricular assist devices, low speeds should be maintained at rest, to avoid suction. However, during physical activity, higher speeds are needed to prevent an abnormal increase in the ventricular filling pressures typical of patients with heart failure and a normal ejection fraction.Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…