• European radiology · Oct 2019

    Review

    Image-based biomarkers for solid tumor quantification.

    • Peter Savadjiev, Jaron Chong, Anthony Dohan, Vincent Agnus, Reza Forghani, Caroline Reinhold, and Benoit Gallix.
    • Department of Diagnostic Radiology, McGill University, Montreal, QC, Canada.
    • Eur Radiol. 2019 Oct 1; 29 (10): 5431-5440.

    AbstractThe last few decades have witnessed tremendous technological developments in image-based biomarkers for tumor quantification and characterization. Initially limited to manual one- and two-dimensional size measurements, image biomarkers have evolved to harness developments not only in image acquisition technology but also in image processing and analysis algorithms. At the same time, clinical validation remains a major challenge for the vast majority of these novel techniques, and there is still a major gap between the latest technological developments and image biomarkers used in everyday clinical practice. Currently, the imaging biomarker field is attracting increasing attention not only because of the tremendous interest in cutting-edge therapeutic developments and personalized medicine but also because of the recent progress in the application of artificial intelligence (AI) algorithms to large-scale datasets. Thus, the goal of the present article is to review the current state of the art for image biomarkers and their use for characterization and predictive quantification of solid tumors. Beginning with an overview of validated imaging biomarkers in current clinical practice, we proceed to a review of AI-based methods for tumor characterization, such as radiomics-based approaches and deep learning.Key Points• Recent years have seen tremendous technological developments in image-based biomarkers for tumor quantification and characterization.• Image-based biomarkers can be used on an ongoing basis, in a non-invasive (or mildly invasive) way, to monitor the development and progression of the disease or its response to therapy.• We review the current state of the art for image biomarkers, as well as the recent developments in artificial intelligence (AI) algorithms for image processing and analysis.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…