-
- Fenghua Guo, Chantal M W Tax, Alberto De Luca, Max A Viergever, Anneriet Heemskerk, and Alexander Leemans.
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
- J Neuroimaging. 2021 Nov 1; 31 (6): 1082-1098.
Background And PurposeDiffusion MRI of the brain enables to quantify white matter fiber orientations noninvasively. Several approaches have been proposed to estimate such characteristics from diffusion MRI data with spherical deconvolution being one of the most widely used methods. Spherical deconvolution requires to define--or derive from the data--a response function, which is used to compute the fiber orientation distribution (FOD). Different characteristics of the response function are expected to affect the FOD computation and the subsequent fiber tracking.MethodsIn this work, we explored the effects of inaccuracies in the shape factors of the response function on the FOD characteristics.ResultsWith simulations, we show that the apparent fiber density could be doubled in the presence of underestimated shape factors in the response functions, whereas the overestimation of the shape factor will cause more spurious peaks in the FOD, especially when the signal-to-noise ratio is below 15. Moreover, crossing fiber populations with a separation angle smaller than 60° were more sensitive to inaccuracies in the response function than fiber populations with more orthogonal separation angles. Results with in vivo data demonstrate angular deviations in the FODs and spurious peaks as a result of modified shape factors of the response function, while the reconstruction of the main parts of fiber bundles is well preserved.ConclusionsThis work sheds light on how specific aspects of the response function shape can affect the estimated FODs, and highlights the importance of a proper calibration/definition of the response function.© 2021 The Authors. Journal of Neuroimaging published by Wiley Periodicals LLC on behalf of American Society of Neuroimaging.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.