-
- Stefan Schleifenbaum, Robin Heilmann, Elena Riemer, Rebekka Reise, Christoph-Eckhard Heyde, Jan-Sven Jarvers, Philipp Pieroh, Anna Völker, and von der HoehNicolas HeinzNHDepartment of Orthopedic, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany. Electronic address: Nicolas.vonderHoeh@medizin.uni-leipzig.de..
- Zentrum zur Erforschung der Stuetz- und Bewegungsorgane, University of Leipzig, Leipzig, Germany; Department of Orthopedic, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany.
- World Neurosurg. 2021 Aug 1; 152: e540-e548.
BackgroundIntervertebral fusions in cases of reduced bone density are a tough challenge. From a biomechanical point of view, most current studies have focused on the range of motion or have shown test setups for single-component tests. Definitive setups for biomechanical testing of the primary stability of a 360° fusion using a screw-rod system and cage on osteoporotic spine are missing. The aim of this study was to develop a test stand to provide information about the bone-implant interface under reproducible conditions.MethodsAfter pretesting with artificial bone, functional spine units were tested with 360° fusion in the transforaminal lumbar interbody fusion technique. The movement sequences were conducted in flexion/extension, right and left lateral bending, and right and left axial rotation on a human model with osteopenia or osteoporosis under permanent maximum load with 7.5 N-m.ResultsDuring the testing of human cadavers, 4 vertebrae were fully tested and were inconspicuous even after radiological and macroscopic examination. One vertebra showed a subsidence of 2 mm, and 1 vertebra had a cage collapsed into the vertebra.ConclusionsThis setup is suitable for biomechanical testing of cyclical continuous loads on the spine with reduced bone quality or osteoporosis. The embedding method is stable and ensures a purely single-level setup with different trajectories, especially when using the cortical bone trajectory. Optical monitoring provides a very accurate indication of cage movement, which correlates with the macroscopic and radiological results.Copyright © 2021 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.