• IEEE Trans Biomed Eng · Feb 2000

    Quality driven gold washing adaptive vector quantization and its application to ECG data compression.

    • S G Miaou and H L Yen.
    • Department of Electronic Engineering, Chung Yuan Christian University, Taiwan, R.O.C. miaou@wavelet.el.cycu.edu.tw
    • IEEE Trans Biomed Eng. 2000 Feb 1; 47 (2): 209-18.

    AbstractThe gold washing (GW) adaptive vector quantization (AVQ) (GW-AVQ) is a relatively new scheme for data compression. The adaptive nature of the algorithm provides the robustness for wide variety of the signals. However, the performance of GW-AVQ is highly dependent on a preset parameter called distortion threshold (dth) which must be determined by experience or trial-and-error. We propose an algorithm that allows us to assign an initial dth arbitrarily and then automatically progress toward a desired dth according to a specified quality criterion, such as the percent of root mean square difference (PRD) for electrocardiogram (ECG) signals. A theoretical foundation of the algorithm is also presented. This algorithm is particularly useful when multiple GW-AVQ codebooks and, thus, multiple dth's are required in a subband coding framework. Four sets of ECG data with entirely different characteristics are selected from the MIT/BIH database to verify the proposed algorithm. Both the direct GW-AVQ and a wavelet-based GW-AVQ are tested. The results show that a user specified PRD can always be reached regardless of the ECG waveforms, the initial selection of dth or whether a wavelet transform is used in conjunction with the GW-AVQ. An average result of 6% in PRD and 410 bits/s in compressed data rate is obtained with excellent visual quality.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…