-
- Hwan-Ho Cho, Geewon Lee, Ho Yun Lee, and Hyunjin Park.
- Department of Electronic and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
- Eur Radiol. 2020 May 1; 30 (5): 2984-2994.
ObjectivesLung adenocarcinomas which manifest as ground-glass nodules (GGNs) have different degrees of pathological invasion and differentiating among them is critical for treatment. Our goal was to evaluate the addition of marginal features to a baseline radiomics model on computed tomography (CT) images to predict the degree of pathologic invasiveness.MethodsWe identified 236 patients from two cohorts (training, n = 189; validation, n = 47) who underwent surgery for GGNs. All GGNs were pathologically confirmed as adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or invasive adenocarcinoma (IA). The regions of interest were semi-automatically annotated and 40 radiomics features were computed. We selected features using L1-norm regularization to build the baseline radiomics model. Additional marginal features were developed using the cumulative distribution function (CDF) of intratumoral intensities. An improved model was built combining the baseline model with CDF features. Three classifiers were tested for both models.ResultsThe baseline radiomics model included five features and resulted in an average area under the curve (AUC) of 0.8419 (training) and 0.9142 (validation) for the three classifiers. The second model, with the additional marginal features, resulted in AUCs of 0.8560 (training) and 0.9581 (validation). All three classifiers performed better with the added features. The support vector machine showed the most performance improvement (AUC improvement = 0.0790) and the best performance was achieved by the logistic classifier (validation AUC = 0.9825).ConclusionOur novel marginal features, when combined with a baseline radiomics model, can help differentiate IA from AIS and MIA on preoperative CT scans.Key Points• Our novel marginal features could improve the existing radiomics model to predict the degree of pathologic invasiveness in lung adenocarcinoma.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.