-
- Radko Krissak, Charles A Mistretta, Thomas Henzler, Anastasios Chatzikonstantinou, Johann Scharf, Stefan O Schoenberg, and Christian Fink.
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany. radko.krissak@umm.de
- Plos One. 2011 Feb 11; 6 (2): e17098.
PurposeTo evaluate image quality and signal characteristics of brain perfusion CT (BPCT) obtained by low-dose (LD) and ultra-low-dose (ULD) protocols with and without post-processing by highly constrained back-projection (HYPR)-local reconstruction (LR) technique.Methods And MaterialsSimultaneous BPCTs were acquired in 8 patients on a dual-source-CT by applying LD (80 kV, 200 mAs, 14×1.2 mm) on tube A and ULD (80 kV, 30 mAs, 14×1.2 mm) on tube B. Image data from both tubes was reconstructed with identical parameters and post-processed using the HYPR-LR. Correlation coefficients between mean and maximum (MAX) attenuation values within corresponding ROIs, area under attenuation curve (AUC), and signal to noise ratio (SNR) of brain parenchyma were assessed. Subjective image quality was assessed on a 5-point scale by two blinded observers (1: excellent, 5: non-diagnostic).ResultsRadiation dose of ULD was more than six times lower compared to LD. SNR was improved by HYPR: ULD vs. ULD+HYPR: 1.9±0.3 vs. 8.4±1.7, LD vs. LD+HYPR: 5.0±0.7 vs. 13.4±2.4 (both p<0.0001). There was a good correlation between the original datasets and the HYPR-LR post-processed datasets: r = 0.848 for ULD and ULD+HYPR and r = 0.933 for LD and LD+HYPR (p<0.0001 for both). The mean values of the HYPR-LR post-processed ULD dataset correlated better with the standard LD dataset (r = 0.672) than unprocessed ULD (r = 0.542), but both correlations were significant (p<0.0001). There was no significant difference in AUC or MAX. Image quality was rated excellent (1.3) in LD+HYPR and non-diagnostic (5.0) in ULD. LD and ULD+HYPR images had moderate image quality (3.3 and 2.7).ConclusionSNR and image quality of ULD-BPCT can be improved to a level similar to LD-BPCT when using HYPR-LR without distorting attenuation measurements. This can be used to substantially reduce radiation dose. Alternatively, LD images can be improved by HYPR-LR to higher diagnostic quality.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.