-
- Safia Costes, Brigitte Vandewalle, Cécile Tourrel-Cuzin, Christophe Broca, Nathalie Linck, Gyslaine Bertrand, Julie Kerr-Conte, Bernard Portha, François Pattou, Joel Bockaert, and Stéphane Dalle.
- Institut National de la Santé et de la Recherche Médicale (INSERM), U661, Equipe Avenir, Institut de Génomique Fonctionnelle, Montpellier, France.
- Diabetes. 2009 May 1; 58 (5): 1105-15.
ObjectiveIn type 2 diabetes, chronic hyperglycemia is detrimental to beta-cells, causing apoptosis and impaired insulin secretion. The transcription factor cAMP-responsive element-binding protein (CREB) is crucial for beta-cell survival and function. We investigated whether prolonged exposure of beta-cells to high glucose affects the functional integrity of CREB.Research Design And MethodsINS-1E cells and rat and human islets were used. Gene expression was analyzed by RT-PCR and Western blotting. Apoptosis was detected by cleaved caspase-3 emergence, DNA fragmentation, and electron microscopy.ResultsChronic exposure of INS-1E cells and rat and human islets to high glucose resulted in decreased CREB protein expression, phosphorylation, and transcriptional activity associated with apoptosis and impaired beta-cell function. High-glucose treatment increased CREB polyubiquitination, while treatment of INS-1E cells with the proteasome inhibitor MG-132 prevented the decrease in CREB content. The emergence of apoptosis in INS-1E cells with decreased CREB protein expression knocked down by small interfering RNA suggested that loss of CREB protein content induced by high glucose contributes to beta-cell apoptosis. Loading INS-1E cells or human islets with a cell-permeable peptide mimicking the proteasomal targeting sequence of CREB blocked CREB degradation and protected INS-1E cells and human islets from apoptosis induced by high glucose. The insulin secretion in response to glucose and the insulin content were preserved in human islets exposed to high glucose and loaded with the peptide.ConclusionsThese studies demonstrate that the CREB degradation by the ubiquitin-proteasome pathway contributes to beta-cell dysfunction and death upon glucotoxicity and provide new insight into the cellular mechanisms of glucotoxicity.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.