-
- Chun Hei Adrian Tam, Yiu Che Chan, Yuk Law, and Cheng Stephen Wing Keung SWK Division of Vascular & Endovascular Surgery, Department of Surgery, University of Hong Kong Medical Centre, Queen Mary Hospital, Hong Kong, C.
- Division of Vascular & Endovascular Surgery, Department of Surgery, University of Hong Kong Medical Centre, Queen Mary Hospital, Hong Kong, China.
- Ann Vasc Surg. 2018 Nov 1; 53: 243-254.
BackgroundThree-dimensional (3D) printing, also known as rapid prototyping or additive manufacturing, is a novel adjunct in the medical field. The aim of this systematic review is to evaluate the role of 3D printing technology in the field of contemporary vascular surgery in terms of its technical aspect, practicability, and clinical outcome.MethodsA systematic search of literatures published from January 1, 1980 to July 15, 2017 was identified from the EMBASE, MEDLINE, and Cochrane library database with reference to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline. The predefined selection inclusion criterion was clinical application of 3D printing technology in vascular surgery of large and small vessel pathology.ResultsForty-two articles were included in this systematic review, including 2 retrospective cohorts and 1 prospective case control study. 3D printing was mostly applied to abdominal aortic aneurysm (n = 20) and thoracic aorta pathology (n = 8), other vessels included celiac, splenic, carotid, subclavian, femoral artery, and portal vein (n = 10). The most commonly quoted materials were acrylonitrile-butadiene-styrene (n = 2), polylactic acid (n = 4), polyurethane resin (n = 3) and nylon (n = 3). The cost per replica ranged from USD $4-2,360. Cost for a commercial printer was around USD $2,210-50,000.Conclusion3D printing was recognized and gradually incorporated as a useful adjunct in the field of vascular and endovascular surgery. The production of an accurate anatomic patient-specific replica was shown to bring significant impact in patient management in terms of anatomic understanding, procedural planning, and intraoperative navigation, education, and academic research as well as patient communication. Further analysis on cost-effectiveness was indicated to guide decisions on applicability of such promising technology on a routine basis.Copyright © 2018 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.