• Stud Health Technol Inform · Jan 2002

    Performance evaluation of artificial intelligence classifiers for the medical domain.

    • A E Smith, C D Nugent, and S I McClean.
    • Medical Informatics, Faculty of Informatics, University of Ulster, Jordanstown, Newtownabbey, Co. Antrim, Northern Ireland, UK. ae.smith@ulst.ac.uk
    • Stud Health Technol Inform. 2002 Jan 1; 90: 553-6.

    AbstractThe application of artificial intelligence systems is still not widespread in the medical field, however there is an increasing necessity for these to handle the surfeit of information available. One drawback to their implementation is the lack of criteria or guidelines for the evaluation of these systems. This is the primary issue in their acceptability to clinicians, who require them for decision support and therefore need evidence that these systems meet the special safety-critical requirements of the domain. This paper shows evidence that the most prevalent form of intelligent system, neural networks, is generally not being evaluated rigorously regarding classification precision. A taxonomy of the types of evaluation tests that can be carried out, to gauge inherent performance of the outputs of intelligent systems has been assembled, and the results of this presented in a clear and concise form, which should be applicable to all intelligent classifiers for medicine.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.