• Lancet · Feb 2015

    Pleiotropic effects of statins in hypercholesterolaemia: a prospective observational study using a lipoproteomic based approach.

    • Sanjay Bhandari, Pankaj Gupta, Paulene Quinn, Jatinderpal Sandhu, Amirmansoor Hakimi, Donald Jones, and Leong Ng.
    • Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, University of Leicester, Leicester, UK. Electronic address: sanjay1bhandari@hotmail.com.
    • Lancet. 2015 Feb 26;385 Suppl 1:S21.

    BackgroundThe benefit of statins in the prevention of cardiovascular disease is well founded, derived from their lipid lowering and pleiotropic effects. The concept of lipoproteins as lipid transporters has evolved to encompass functions in coagulation, inflammation, and redox reactions due to their unique protein cargo. The aim of this study was to determine the effect of statin therapy on lipoproteins and their protein cargo by use of an unbiased bottom-up proteomics approach in people with hypercholesterolaemia.Methods11 people fulfilling the inclusion criteria were recruited into this UK-based single centre prospective observational study. They were started on statins for primary prevention. Blood was withdrawn at baseline and after a minimum of 2 months of statin therapy. Plasma was co-incubated with a lipoaffinity resin. Isolated proteins were digested and analysed with label-free two-dimensional liquid chromatography coupled to electrospray high-definition ion mobility tandem mass spectrometry.Findings218 proteins were identified with Progenesis QI software, with 33 proteins demonstrating significant differential expression between the pre-statin and the on-statin samples (each p<0·05). 17 proteins were upregulated by statin therapy, including proteins concerned with cytoskeletal organisation (vinculin p<0·0001, tropomyosin α4 p=0·0108), antioxidative (peroxiredoxin 2 p=0·0092), and anti-inflammatory effects (transgelin-2 p=0·0071). Apolipoprotein B100 was downregulated by statin therapy, consistent with it mechanism of action (p=0·0006). Statin therapy downregulated novel proteins concerned with the modulation of pancreatic β-cell function (adipsin p=0·0056) and haemopoietic precursor proliferation (stem cell growth factor p<0·0001).InterpretationOur findings show that statins remodel the cytoskeletal architecture and mediate various anti-inflammatory, antioxidant, and antiproliferative effects that might limit endothelial dysfunction. The downregulation of adipsin, a novel adipokine that stimulates insulin secretion, could explain the controversial link between statin use and the development of diabetes. This study extends our understanding of the beneficial and harmful pleiotropic effects of statin therapy.FundingBritish Heart Foundation.Copyright © 2015 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.