-
Pathologie-biologie · Mar 2003
Review[Hyperhomocysteinemia: an independent risk factor or a simple marker of vascular disease?. 1. Basic data].
- J-C Guilland, A Favier, G Potier de Courcy, P Galan, and S Hercberg.
- Laboratoire de physiologie, UFR de médecine, BP 87900, 21079 cedex, Dijon, France. jean-claude.guilland@chu-dijon.fr <jean-claude.guilland@chu-dijon.fr>
- Pathol. Biol. 2003 Mar 1; 51 (2): 101-10.
AbstractRecent epidemiological studies have suggested that hyperhomocysteinemia is associated with increased risk of vascular disease. Homocysteine is a sulphur-containing amino acid whose metabolism stands at the intersection of two pathways: remethylation to methionine, which requires folate and vitamin B12 (or betaine in an alternative reaction); and transsulfuration to cystathionine which requires vitamin B6. The two pathways are coordinated by S-adenosylmethionine which acts as an allosteric inhibitor of the methylenetetrahydrofolate reductase (MTHFR) and as an activator of cystathionine beta-synthase (CBS). Hyperhomocysteinemia arises from disrupted homocysteine metabolism. Severe hyperhomocysteinemia is due to rare genetic defects resulting in deficiencies in CBS, MTHFR, or in enzymes involved in methyl cobalamine synthesis and homocysteine methylation. Mild hyperhomocysteinemia seen in fasting condition is due to mild impairment in the methylation pathway (i.e. folate or B12 deficiencies or MTHFR thermolability). Post-methionine-load hyperhomocysteinaemia may be due to heterozygous cystathionine-beta-synthase defect or B6 deficiency. Patients with homocystinuria and severe hyperhomocysteinemia develop arterial thrombotic events, venous thromboembolism, and more seldom premature arteriosclerosis. Experimental evidence suggests that an increased concentration of homocysteine may result in vascular changes through several mechanisms. High levels of homocysteine induce sustained injury of arterial endothelial cells, proliferation of arterial smooth muscle cells and enhance expression/activity of key participants in vascular inflammation, atherogenesis, and vulnerability of the established atherosclerotic plaque. These effects are supposed to be mediated through its oxidation and the concomitant production of reactive oxygen species. Other effects of homocysteine include: impaired generation and decreased bioavailability of endothelium-derived relaxing factor/nitric oxide; interference with many transcription factors and signal transduction; oxidation of low-density lipoproteins; lowering of endothelium-dependent vasodilatation. In fact, the effect of elevated homocysteine appears multifactorial affecting both the vascular wall structure and the blood coagulation system.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.