• Lancet · Feb 2015

    Use of a novel floxed mouse to characterise the cellular source of plasma coagulation FXIII-A.

    • Kathryn Griffin, Kingsley Simpson, Cora Beckers, Jane Brown, Jean Vacher, Wilhelm Ouwehand, Warren Alexander, Richard Pease, and Peter Grant.
    • Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK. Electronic address: Kgriffin@doctors.org.uk.
    • Lancet. 2015 Feb 26; 385 Suppl 1: S39S39.

    BackgroundCoagulation factor XIII-A has a crucial role in thrombus stabilisation and tissue repair. Factor XIII-A deficiency causes a severe bleeding phenotype and impaired wound healing, but the cellular origin of Factor XIII-A is unknown. To identify the cells that maintain the plasma pool, we generated a mouse floxed in coding exon7 of the factor XIII-A gene (F13A1). These mice were crossed with mice transgenic for Pf4-Cre-recombinase (thrombopoietic deletion) or Cd11b-Cre-recombinase (myeloid deletion). The resultant mice were compared with a Mpl-/- (thrombopoietin receptor knockout) thrombocytopenic murine model.MethodsFactor XIII-A recombination was evaluated by quantitative PCR assay of genomic DNA from liver and spleen. Factor XIII-A enzyme activity was measured in plasma and platelets with a biotin incorporation assay. quantitative PCR was performed to determine factor XIII-A mRNA levels in aortic and cardiac tissue. Factor XIII-A transcripts were assayed in human umbilical blood haemopoietic cell lineages.FindingsSelectivity of Pf4-Cre and Cd11b-Cre mediated deletion was confirmed in liver and spleen. A 40% decrease in factor XIII-A plasma activity was observed in Cd11b mice, whereas plasma activity was decreased by 85% and absent in platelets from Pf4 mice. By contrast, plasma factor XIII-A was normal in Mpl mice. Cd11b mice showed no reduction in factor XIII-A mRNA in cardiac tissue and a 54·6% reduction in aorta. A major decrease in factor XIII-A mRNA was observed in the aorta (91·6%) and heart (99·2%) of Pf4 mice, but there was no change in expression in either tissue from Mpl mice. In a human stem-cell study, factor XIII-A mRNA transcription increased as common myeloid progenitors committed to become granulocyte-macrophage progenitors and as megakaryocyte-erythroid progenitors differentiated to both megakaryocytes and erythroblasts.InterpretationThese results raise the possibility that a unique Pf4-dependent, Mpl-independent progenitor cell is the major source of the plasma pool. These findings might have implications for the management of factor XIII-A deficiency states.FundingBritish Heart Foundation.Copyright © 2015 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…