• Clin Trials · Apr 2019

    Variance prior specification for a basket trial design using Bayesian hierarchical modeling.

    • Kristen M Cunanan, Alexia Iasonos, Ronglai Shen, and Mithat Gönen.
    • Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
    • Clin Trials. 2019 Apr 1; 16 (2): 142-153.

    BackgroundIn the era of targeted therapies, clinical trials in oncology are rapidly evolving, wherein patients from multiple diseases are now enrolled and treated according to their genomic mutation(s). In such trials, known as basket trials, the different disease cohorts form the different baskets for inference. Several approaches have been proposed in the literature to efficiently use information from all baskets while simultaneously screening to find individual baskets where the drug works. Most proposed methods are developed in a Bayesian paradigm that requires specifying a prior distribution for a variance parameter, which controls the degree to which information is shared across baskets.MethodsA common approach used to capture the correlated binary endpoints across baskets is Bayesian hierarchical modeling. We evaluate a Bayesian adaptive design in the context of a non-randomized basket trial and investigate three popular prior specifications: an inverse-gamma prior on the basket-level variance, a uniform prior and half-t prior on the basket-level standard deviation.ResultsFrom our simulation study, we can see that the inverse-gamma prior is highly sensitive to the input hyperparameters. When the prior mean value of the variance parameter is set to be near zero ( ≤ 0 . 5 ) , this can lead to unacceptably high false-positive rates ( ≥ 40 % ) in some scenarios. Thus, use of this prior requires a fully comprehensive sensitivity analysis before implementation. Alternatively, we see that a prior that places sufficient mass in the tail, such as the uniform or half-t prior, displays desirable and robust operating characteristics over a wide range of prior specifications, with the caveat that the upper bound of the uniform prior and the scale parameter of the half-t prior must be larger than 1.ConclusionBased on the simulation results, we recommend that those involved in designing basket trials that implement hierarchical modeling avoid using a prior distribution that places a majority of the density mass near zero for the variance parameter. Priors with this property force the model to share information regardless of the true efficacy configuration of the baskets. Many commonly used inverse-gamma prior specifications have this undesirable property. We recommend to instead consider the more robust uniform prior or half-t prior on the standard deviation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.