• Magn Reson Med · Apr 1993

    Nuclear magnetic resonance Hahn spin-echo decay (T2) in live rats with endotoxin lung injury.

    • S Shioya, R Christman, D C Ailion, A G Cutillo, and K C Goodrich.
    • Department of Physics, University of Utah, Salt Lake City 84112.
    • Magn Reson Med. 1993 Apr 1; 29 (4): 441-5.

    AbstractTo determine the possibility of using nuclear magnetic resonance imaging to study experimentally induced lung injury, we measured in the lungs of spontaneously breathing living rats the time course of both the Hahn spin-echo decay (T2) and the proton density after endotoxin injury. In order to minimize artifacts arising from motions of the nearby chest wall and heart, we used a motion-insensitive technique (the interleaved line scan). A typical Hahn T2 measurement was obtained over a region of interest from a series of images each with a different echo time, which ranged from 16 to 110 ms. Lung water content was determined by integrating the proton density over the region of interest. The Hahn T2 and proton density were measured before and at 1, 3, 6, and 9 h after intravenous injection of endotoxin. The effects of the treatment administered before and after endotoxin injection were also evaluated. Endotoxin treatment caused lengthening of both fast (T2f) and slow (T2s) Hahn T2 components but had no significant effect on the proton density, consistent with the notion that endotoxin causes lung injury without significant lung water accumulation in rats. However, the methylprednisolone treatment prevented the lengthening of T2s but did not seem to have a significant effect on T2f. Our results suggest that NMR imaging can be used to detect and monitor experimental lung injury in intact living animals, even in the absence of variations of lung water content.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…