• Am. J. Obstet. Gynecol. · Mar 2016

    The impact of fetal growth restriction on latency in the setting of expectant management of preeclampsia.

    • David McKinney, Heather Boyd, Amanda Langager, Michael Oswald, Abbey Pfister, and Carri R Warshak.
    • Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, OH.
    • Am. J. Obstet. Gynecol. 2016 Mar 1; 214 (3): 395.e1-7.

    BackgroundFetal growth restriction is a common complication of preeclampsia. Expectant management for qualifying patients has been found to have acceptable maternal safety while improving neonatal outcomes. Whether fetal growth restriction influences the duration of latency during expectant management of preeclampsia is unknown.ObjectiveThe objective of the study was to determine whether fetal growth restriction is associated with a reduced interval to delivery in women with preeclampsia being expectantly managed prior to 34 weeks.Study DesignWe performed a retrospective cohort of singleton, live-born, nonanomalous deliveries at the University of Cincinnati Medical Center between 2008 and 2013. Patients were included in our analysis if they were diagnosed with preeclampsia prior to 34 completed weeks and if the initial management plan was to pursue expectant management beyond administration of steroids for fetal lung maturity. Two study groups were determined based on the presence or absence of fetal growth restriction. Patients were delivered when they developed persistent neurological symptoms, severe hypertension refractory to medical therapy, renal insufficiency, nonreassuring fetal status, pulmonary edema, or hemolysis elevated liver low platelet syndrome or when they reached 37 weeks if they remained stable without any other indication for delivery. Our primary outcome was the interval from diagnosis of preeclampsia to delivery, measured in days. Secondary outcomes included indications for delivery, rates of induction and cesarean delivery, development of severe morbidities of preeclampsia, and select neonatal outcomes. We performed a multivariate logistic regression analysis comparing those with fetal growth restriction with those with normally grown fetuses to determine whether there is an association between fetal growth restriction and a shortened interval to delivery, neonatal intensive care unit admission, prolonged neonatal stay, and neonatal mortality.ResultsA total of 851 patients met the criteria for preeclampsia, of which 199 met inclusion criteria, 139 (69%) with normal growth, and 60 (31%) with fetal growth restriction. Interval to delivery was significantly shorter in women with fetal growth restriction, median (interquartile range) of 3 (1.6) days vs normal growth, 5 (2.12) days, P < .001. The association between fetal growth restriction and latency less than 7 days remained significant, even after post hoc analysis controlling for confounding variables (adjusted odds ratio, 1.66 [95% confidence interval, 1.12-2.47]). There were no differences in the development of severe disease (85.9 vs 91.7%, P = .26), need for intravenous antihypertensive medications (47.1 vs 46.7%, P = .96), and the development of severe complications of preeclampsia (51.1 vs 42.9%, P = .30) in normally grown and growth-restricted fetuses, respectively. Fewer women with fetal growth restriction attained their scheduled delivery date, 3 of 60 (5.0%), compared with normally grown fetuses,12 of 139 (15.7%), P = .03. Admission to the neonatal intensive care unit, neonatal length of stay, and neonatal mortality were higher when there was fetal growth restriction; however, after a logistic regression analysis, these associations were no longer significant.ConclusionFetal growth restriction is associated with a shortened interval to delivery in women undergoing expectant management of preeclampsia when disease is diagnosed prior to 34 weeks. These data may be helpful in counseling patients regarding the expected duration of pregnancy, guiding decision making regarding administration of steroids and determining the need for maternal transport.Copyright © 2016 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…