-
- Isaac S Chua, Michal Gaziel-Yablowitz, Zfania T Korach, Kenneth L Kehl, Nathan A Levitan, Yull E Arriaga, Gretchen P Jackson, David W Bates, and Michael Hassett.
- Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Cancer Med. 2021 Jun 1; 10 (12): 4138-4149.
AbstractIn recent years, the field of artificial intelligence (AI) in oncology has grown exponentially. AI solutions have been developed to tackle a variety of cancer-related challenges. Medical institutions, hospital systems, and technology companies are developing AI tools aimed at supporting clinical decision making, increasing access to cancer care, and improving clinical efficiency while delivering safe, high-value oncology care. AI in oncology has demonstrated accurate technical performance in image analysis, predictive analytics, and precision oncology delivery. Yet, adoption of AI tools is not widespread, and the impact of AI on patient outcomes remains uncertain. Major barriers for AI implementation in oncology include biased and heterogeneous data, data management and collection burdens, a lack of standardized research reporting, insufficient clinical validation, workflow and user-design challenges, outdated regulatory and legal frameworks, and dynamic knowledge and data. Concrete actions that major stakeholders can take to overcome barriers to AI implementation in oncology include training and educating the oncology workforce in AI; standardizing data, model validation methods, and legal and safety regulations; funding and conducting future research; and developing, studying, and deploying AI tools through multidisciplinary collaboration.© 2021 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.