• Stroke · Mar 2019

    Deep Learning Natural Language Processing Successfully Predicts the Cerebrovascular Cause of Transient Ischemic Attack-Like Presentations.

    • Stephen Bacchi, Luke Oakden-Rayner, Toby Zerner, Timothy Kleinig, Sandy Patel, and Jim Jannes.
    • From the Royal Adelaide Hospital, Adelaide, Australia (S.B., L.O.-R., T.K., S.P., J.J.).
    • Stroke. 2019 Mar 1; 50 (3): 758-760.

    AbstractBackground and Purpose- Triaging of referrals to transient ischemic attack (TIA) clinics is aided by risk stratification. Deep learning-based natural language processing, a type of machine learning, may be able to assist with the prediction of cerebrovascular cause of TIA-like presentations from free-text information. Methods- Consecutive TIA clinic notes were retrieved from existing databases. Texts associated with cerebrovascular and noncerebrovascular diagnoses were preprocessed before classification experiments, using a variety of classifier models, based on only the free-text description of the history of presenting complaint. The primary outcome was area under the curve (AUC) of the receiver operator curve. The model with the greatest AUC was then used in classification experiments in which it was provided with additional clinical information. Results- Of the classifier models trialed on the history of presenting complaint, the convolutional neural network achieved the greatest predictive capability (AUC±SD; 81.9±2.0). The effects of additional clinical information on AUC were variable. The greatest AUC was achieved when the convolutional neural network was provided with the history of presenting complaint and magnetic resonance imaging report (88.3±3.6). Conclusions- Deep learning-based natural language processing, in particular convolutional neural networks, based on medical free-text, may prove effective in prediction of the cause of TIA-like presentations. Future research investigating the role of the application of deep learning-based natural language processing to the automated triaging of clinic referrals in TIA, and potentially other specialty areas, is indicated.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.