• Cancer research · Nov 2019

    Review

    Use of Natural Language Processing to Extract Clinical Cancer Phenotypes from Electronic Medical Records.

    • Guergana K Savova, Ioana Danciu, Folami Alamudun, Timothy Miller, Chen Lin, Danielle S Bitterman, Georgia Tourassi, and Jeremy L Warner.
    • Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts. Guergana.Savova@childrens.harvard.edu.
    • Cancer Res. 2019 Nov 1; 79 (21): 5463-5470.

    AbstractCurrent models for correlating electronic medical records with -omics data largely ignore clinical text, which is an important source of phenotype information for patients with cancer. This data convergence has the potential to reveal new insights about cancer initiation, progression, metastasis, and response to treatment. Insights from this real-world data will catalyze clinical care, research, and regulatory activities. Natural language processing (NLP) methods are needed to extract these rich cancer phenotypes from clinical text. Here, we review the advances of NLP and information extraction methods relevant to oncology based on publications from PubMed as well as NLP and machine learning conference proceedings in the last 3 years. Given the interdisciplinary nature of the fields of oncology and information extraction, this analysis serves as a critical trail marker on the path to higher fidelity oncology phenotypes from real-world data.©2019 American Association for Cancer Research.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…