• J. Biol. Chem. · Nov 2020

    An automated, high-throughput methodology optimized for quantitative cell-free mitochondrial and nuclear DNA isolation from plasma.

    • Sarah A Ware, Nikita Desai, Mabel Lopez, Daniel Leach, Yingze Zhang, Luca Giordano, Mehdi Nouraie, Martin Picard, and Brett A Kaufman.
    • Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
    • J. Biol. Chem. 2020 Nov 13; 295 (46): 15677-15691.

    AbstractProgress in the study of circulating, cell-free nuclear DNA (ccf-nDNA) in cancer detection has led to the development of noninvasive clinical diagnostic tests and has accelerated the evaluation of ccf-nDNA abundance as a disease biomarker. Likewise, circulating, cell-free mitochondrial DNA (ccf-mtDNA) is under similar investigation. However, optimal ccf-mtDNA isolation parameters have not been established, and inconsistent protocols for ccf-nDNA collection, storage, and analysis have hindered its clinical utility. Until now, no studies have established a method for high-throughput isolation that considers both ccf-nDNA and ccf-mtDNA. We initially optimized human plasma digestion and extraction conditions for maximal recovery of these DNAs using a magnetic bead-based isolation method. However, when we incorporated this method onto a high-throughput platform, initial experiments found that DNA isolated from identical human plasma samples displayed plate edge effects resulting in low ccf-mtDNA reproducibility, whereas ccf-nDNA was less affected. Therefore, we developed a detailed protocol optimized for both ccf-mtDNA and ccf-nDNA recovery that uses a magnetic bead-based isolation process on an automated 96-well platform. Overall, we calculate an improved efficiency of recovery of ∼95-fold for ccf-mtDNA and 20-fold for ccf-nDNA when compared with the initial procedure. Digestion conditions, liquid-handling characteristics, and magnetic particle processor programming all contributed to increased recovery without detectable positional effects. To our knowledge, this is the first high-throughput approach optimized for ccf-mtDNA and ccf-nDNA recovery and serves as an important starting point for clinical studies.© 2020 Ware et al.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.