• Molecular psychiatry · May 2018

    Review

    Deep brain stimulation for treatment-resistant depression: an integrative review of preclinical and clinical findings and translational implications.

    • M P Dandekar, A J Fenoy, A F Carvalho, J C Soares, and J Quevedo.
    • Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
    • Mol. Psychiatry. 2018 May 1; 23 (5): 1094-1112.

    AbstractAlthough deep brain stimulation (DBS) is an established treatment choice for Parkinson's disease (PD), essential tremor and movement disorders, its effectiveness for the management of treatment-resistant depression (TRD) remains unclear. Herein, we conducted an integrative review on major neuroanatomical targets of DBS pursued for the treatment of intractable TRD. The aim of this review article is to provide a critical discussion of possible underlying mechanisms for DBS-generated antidepressant effects identified in preclinical studies and clinical trials, and to determine which brain target(s) elicited the most promising outcomes considering acute and maintenance treatment of TRD. Major electronic databases were searched to identify preclinical and clinical studies that have investigated the effects of DBS on depression-related outcomes. Overall, 92 references met inclusion criteria, and have evaluated six unique DBS targets namely the subcallosal cingulate gyrus (SCG), nucleus accumbens (NAc), ventral capsule/ventral striatum or anterior limb of internal capsule (ALIC), medial forebrain bundle (MFB), lateral habenula (LHb) and inferior thalamic peduncle for the treatment of unrelenting TRD. Electrical stimulation of these pertinent brain regions displayed differential effects on mood transition in patients with TRD. In addition, 47 unique references provided preclinical evidence for putative neurobiological mechanisms underlying antidepressant effects of DBS applied to the ventromedial prefrontal cortex, NAc, MFB, LHb and subthalamic nucleus. Preclinical studies suggest that stimulation parameters and neuroanatomical locations could influence DBS-related antidepressant effects, and also pointed that modulatory effects on monoamine neurotransmitters in target regions or interconnected brain networks following DBS could have a role in the antidepressant effects of DBS. Among several neuromodulatory targets that have been investigated, DBS in the neuroanatomical framework of the SCG, ALIC and MFB yielded more consistent antidepressant response rates in samples with TRD. Nevertheless, more well-designed randomized double-blind, controlled trials are warranted to further assess the efficacy, safety and tolerability of these more promising DBS targets for the management of TRD as therapeutic effects have been inconsistent across some controlled studies.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.