-
- Chao-Hung Kuo, Gabrielle A White-Dzuro, and Andrew L Ko.
- 1Neurological Surgery, University of Washington, Seattle, Washington.
- Neurosurg Focus. 2018 Aug 1; 45 (2): E2.
AbstractOBJECTIVE Deep brain stimulation (DBS) is a safe and effective therapy for movement disorders, such as Parkinson's disease (PD), essential tremor (ET), and dystonia. There is considerable interest in developing "closed-loop" DBS devices capable of modulating stimulation in response to sensor feedback. In this paper, the authors review related literature and present selected approaches to signal sources and approaches to feedback being considered for deployment in closed-loop systems. METHODS A literature search using the keywords "closed-loop DBS" and "adaptive DBS" was performed in the PubMed database. The search was conducted for all articles published up until March 2018. An in-depth review was not performed for publications not written in the English language, nonhuman studies, or topics other than Parkinson's disease or essential tremor, specifically epilepsy and psychiatric conditions. RESULTS The search returned 256 articles. A total of 71 articles were primary studies in humans, of which 50 focused on treatment of movement disorders. These articles were reviewed with the aim of providing an overview of the features of closed-loop systems, with particular attention paid to signal sources and biomarkers, general approaches to feedback control, and clinical data when available. CONCLUSIONS Closed-loop DBS seeks to employ biomarkers, derived from sensors such as electromyography, electrocorticography, and local field potentials, to provide real-time, patient-responsive therapy for movement disorders. Most studies appear to focus on the treatment of Parkinson's disease. Several approaches hold promise, but additional studies are required to determine which approaches are feasible, efficacious, and efficient.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.