• J Magn Reson Imaging · Sep 2008

    Diffusion tensor imaging and fiber tractography of C6 rat glioma.

    • Taketoshi Asanuma, Sabrina Doblas, Yasvir A Tesiram, Debra Saunders, Rebecca Cranford, Jamie Pearson, Andrew Abbott, Nataliya Smith, and Rheal A Towner.
    • Small Animal MRI Facility, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA.
    • J Magn Reson Imaging. 2008 Sep 1; 28 (3): 566-73.

    PurposeTo apply diffusion tensor images using 30 noncollinear directions for diffusion-weighted gradient schemes to characterize diffusion tensor imaging (DTI) features associated with C6 glioma-bearing rat brains, and ideally visualize fiber tractography datasets.Materials And MethodsFiber tractographies of normal male Fischer 344 rat brains were constructed from DTI datasets acquired with a 30 noncollinear diffusion gradient scheme. Cultured C6 cell were intracranially injected into the cortex of male Fischer 344 rats. The time course of the tumor growth was monitored with DTI and fiber tractography using diffusion-weighting gradients in 30 noncollinear directions.ResultsFiber tractographies through the corpus callosum (CC) were easily visualized with the 30-direction gradient scheme, and the fiber trajectories of the motor cortex and striatum were well represented in normal rats. Fiber tractography indicated that the neuronal fibers of the CC were compressed or disappeared by growing C6 glioma, which affected surrounding brain tissue.ConclusionWe have demonstrated in this study that fiber tractography with the 30 noncollinear diffusion gradient scheme method can be used to help provide a better understanding regarding the influence of a tumor on the surrounding regions of normal brain tissue in vivo.Copyright (c) 2008 Wiley-Liss, Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…