• Eur J Radiol · Aug 2020

    Multicenter Study

    Development and external validation of an MRI-based radiomics nomogram for pretreatment prediction for early relapse in osteosarcoma: A retrospective multicenter study.

    • Haimei Chen, Jin Liu, Zixuan Cheng, Xing Lu, Xiaohong Wang, Ming Lu, Shaolin Li, Zhiming Xiang, Quan Zhou, Zaiyi Liu, and Yinghua Zhao.
    • Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics. Guangdong Province), Guangzhou, Guangdong 510630, China. Electronic address: 1225051257@qq.com.
    • Eur J Radiol. 2020 Aug 1; 129: 109066.

    PurposeTo develop and externally validate an MR-based radiomics nomogram from retrospective multicenter datasets for pretreatment prediction of early relapse (≤ 1 year) in osteosarcoma after surgical resection.MethodsThis multicenter study retrospectively enrolled 93 patients (training cohort: 62 patients from four hospitals; validation cohort: 31 patients from two hospitals) with clinicopathologically confirmed osteosarcoma who received neoadjuvant chemotherapy and surgical resection at six hospitals between January 2009 and October 2017. Radiomics features were extracted from contrast-enhanced fat-suppressed T1-weighted (CE FS T1-w) images. Least absolute shrinkage and selection operator (LASSO) regression was applied for feature selection and radiomics signature construction. The radiomics nomogram that incorporated the radiomics signature and subjective MRI-assessed candidate predictors was developed to predict early relapse with a multivariate logistic regression model in the training cohort and validated in the external validation cohort. The performance of the nomogram was assessed by its discrimination, calibration, and clinical usefulness.ResultsThe radiomics signature comprised six selected features and achieved favorable prediction efficacy. The radiomics nomogram incorporating the radiomics signature and subjective MRI-assessed candidate predictors (joint invasion and perivascular involvement) from the multicenter datasets achieved better discrimination in the training cohort (C-index:0.907, 95 % CI: 0.838-0.977) and external validation cohort (C-index: 0.811, 95 % CI: 0.653-0.970), and good calibration. Decision curve analysis suggested that the combined nomogram was clinically useful.ConclusionThe proposed MRI-based radiomics nomogram could provide a non-invasive tool to predict early relapse of osteosarcoma, which has the potential to improve personalized pretreatment management of osteosarcoma.Copyright © 2020 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…