• Eur J Radiol · Sep 2018

    On differentiation between vasogenic edema and non-enhancing tumor in high-grade glioma patients using a support vector machine classifier based upon pre and post-surgery MRI images.

    • Anirban Sengupta, Sumeet Agarwal, Pradeep Kumar Gupta, Sunita Ahlawat, Rana Patir, Rakesh Kumar Gupta, and Anup Singh.
    • Centre for Biomedical Engineering, IIT Delhi, New Delhi, India.
    • Eur J Radiol. 2018 Sep 1; 106: 199-208.

    PurposeHigh grade gliomas (HGGs) are infiltrative in nature. Differentiation between vasogenic edema and non-contrast enhancing tumor is difficult as both appear hyperintense in T2-W/FLAIR images. Most studies involving differentiation between vasogenic edema and non-enhancing tumor consider radiologist-based tumor delineation as the ground truth. However, analysis by a radiologist can be subjective and there remain both inter- and intra-rater differences. The objective of the current study is to develop a methodology for differentiation between non-enhancing tumor and vasogenic edema in HGG patients based on T1 perfusion MRI parameters, using a ground truth which is independent of a radiologist's manual delineation of the tumor.Material And MethodsThis study included 9 HGG patients with pre- and post-surgery MRI data and 9 metastasis patients with pre-surgery MRI data. MRI data included conventional T1-W, T2-W, and FLAIR images and DCE-MRI dynamic images. In this study, the authors hypothesize that surgeried non-enhancing FLAIR hyperintense tissue, which was obtained using pre- and post-surgery MRI images of glioma patients, should be largely comprised of non-enhancing tumor. Hence this could be used as an alternative ground truth for the non-enhancing tumor region. Histological examination of the resected tissue was done for validation. Vasogenic edema was obtained from the non-enhancing FLAIR hyperintense region of metastasis patients, as they have a clear boundary between enhancing tumor and edema. DCE-MRI data analysis was performed to obtain T1 perfusion MRI parameters. Support Vector Machine (SVM) classification was performed using T1 perfusion MRI parameters to differentiate between non-enhancing tumor and vasogenic edema. Receiver-operating-characteristic (ROC) analysis was done on the results of the SVM classifier. For improved classification accuracy, the SVM output was post-processed via neighborhood smoothing.ResultsHistology results showed that resected tissue consists largely of tumorous tissue with 7.21 ± 4.05% edema and a small amount of healthy tissue. SVM-based classification provided a misclassification error of 8.4% in differentiation between non-enhancing tumor and vasogenic edema, which was further reduced to 2.4% using neighborhood smoothing.ConclusionThe current study proposes a semiautomatic method for segmentation between non-enhancing tumor and vasogenic edema in HGG patients, based on an SVM classifier trained on an alternative ground truth to a radiologist's manual delineation of a tumor. The proposed methodology may prove to be a useful tool for pre- and post-operative evaluation of glioma patients.Copyright © 2018 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.