• European radiology · Jul 2020

    CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma.

    • Changsi Jiang, Yan Luo, Jialin Yuan, Shuyuan You, Zhiqiang Chen, Mingxiang Wu, Guangsuo Wang, and Jingshan Gong.
    • Department of Radiology, Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, Shenzhen, 518020, China.
    • Eur Radiol. 2020 Jul 1; 30 (7): 4050-4057.

    PurposeSpread through air space (STAS) is a novel invasive pattern of lung adenocarcinoma and is also a risk factor for recurrence and worse prognosis of lung adenocarcinoma. The aims of this study are to develop and validate a computed tomography (CT)‑based radiomics model for preoperative prediction of STAS in lung adenocarcinoma.Methods And MaterialsThis retrospective study was approved by an institutional review board and included 462 (mean age, 58.06 years) patients with pathologically confirmed lung adenocarcinoma. STAS was identified in 90 patients (19.5%). Two experienced radiologists segmented and extracted radiomics features on preoperative thin-slice CT images with radiomics extension independently. Intraclass correlation coefficients (ICC) and Pearson's correlation were used to rule out those low reliable (ICC < 0.75) and redundant (r > 0.9) features. Univariate logistic regression was applied to select radiomics features which were associated with STAS. A radiomics-based machine learning predictive model using a random forest (RF) was developed and calibrated with fivefold cross-validation. The diagnostic performance of the model was measured by the area under the curve (AUC) of receiver operating characteristic (ROC).ResultsWith univariate analysis, 12 radiomics features and age were found to be associated with STAS significantly. The RF model achieved an AUC of 0.754 (a sensitivity of 0.880 and a specificity of 0.588) for predicting STAS.ConclusionCT-based radiomics model can preoperatively predict STAS in lung adenocarcinoma with good diagnosis performance.Key Points• CT-based radiomics and machine learning model can predict spread through air space (STAS) in lung adenocarcinoma with high accuracy. • The random forest (RF) model achieved an AUC of 0.754 (a sensitivity of 0.880 and a specificity of 0.588) for predicting STAS.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.