• Biochemical pharmacology · Oct 1990

    Inhibition of ribonucleotide reductase and growth of human colon carcinoma HT-29 cells and mouse leukemia L1210 cells by N-hydroxy-N'-aminoguanidine derivatives.

    • M Matsumoto, J G Fox, P H Wang, P B Koneru, E J Lien, and J G Cory.
    • Department of Internal Medicine, University of South Florida College of Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa 33612.
    • Biochem. Pharmacol. 1990 Oct 15; 40 (8): 1779-83.

    AbstractA series of N-hydroxy-N'-aminoguanidine (HAG) derivatives were studied and compared for their effects on ribonucleotide reductase activity in cell-free extracts; on nucleic acid synthesis and the growth of human colon carcinoma HT-29 cells; and on mouse leukemia L1210 cells in culture. The HAG derivatives [RCH=NNHC(=NH)NHOH-tosylate] studied could be grouped as: (1) hydroxybenzylidines; (2) methoxybenzylidines; and (3) nitrobenzylidines substituted at the R position. 2'-Hydroxybenzylidine-HAG, the lead compound, was relatively active in both HT-29 cells and L1210 cells (20 +/- 5 and 13 +/- 4 microM for 50% inhibition of HT-29 and L1210 cell growth respectively). The monohydroxybenzylidene compounds were generally more active than the dihydroxy- and trihydroxybenzylidene-HAG derivatives. The methoxybenzylidene-HAGs were as active as the monohydroxybenzylidene-HAGs. 2'-Hydroxy-4'-methoxybenzylidene-HAG was much more active than 2',4'-dihydroxybenzylidene-HAG. The mononitrobenzylidene-HAGs were more active than the dinitrobenzylidene-HAG compound. In general, L1210 cells were more sensitive to the effects of the HAG compounds than were HT-29 cells. There was good agreement between the concentration of drug required to inhibit the growth of HT-29 cells and that required to inhibit the growth of L1210 cells. There was also good correlation between the ability of HAG derivatives to inhibit ribonucleotide reductase activity and to inhibit tumor cell growth. Some derivatives, such as 2',3',4'- and 3',4',5'-trihydroxybenzylidene-HAG inhibited L1210 cell growth by 50% at lower concentrations (7.8 and 11.9 microM respectively) than the concentrations needed for 50% inhibition of HT-29 cell growth (196 and 234 microM respectively) and ribonucleotide reductase activity (122 and 188 microM respectively). The studies of nucleic acid synthesis in L1210 cells using [3H]cytidine as a precursor showed that 2',3',4'-trihydroxybenzylidine-HAG inhibited DNA synthesis at a lower concentration (29 microM for 50% inhibition) than was needed for the inhibition of RNA synthesis and formation of [3H]deoxycytidine nucleotides in the acid-soluble fraction (320 and 820 microM for 50% inhibition respectively). These results indicate that 2',3',4'-trihydroxybenzylidine-HAG inhibits DNA synthesis in L1210 cells through other mechanisms rather than exclusively through the inhibition of ribonucleotide reductase activity.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.