-
- Yiming Li, Xing Liu, Zenghui Qian, Zhiyan Sun, Kaibin Xu, Kai Wang, Xing Fan, Zhong Zhang, Shaowu Li, Yinyan Wang, and Tao Jiang.
- Beijing Neurosurgical Institute, Capital Medical University, 6 Tiantanxili, Beijing, 100050, China.
- Eur Radiol. 2018 Jul 1; 28 (7): 2960-2968.
ObjectivesTo predict ATRX mutation status in patients with lower-grade gliomas using radiomic analysis.MethodsCancer Genome Atlas (TCGA) patients with lower-grade gliomas were randomly allocated into training (n = 63) and validation (n = 32) sets. An independent external-validation set (n = 91) was built based on the Chinese Genome Atlas (CGGA) database. After feature extraction, an ATRX-related signature was constructed. Subsequently, the radiomic signature was combined with a support vector machine to predict ATRX mutation status in training, validation and external-validation sets. Predictive performance was assessed by receiver operating characteristic curve analysis. Correlations between the selected features were also evaluated.ResultsNine radiomic features were screened as an ATRX-associated radiomic signature of lower-grade gliomas based on the LASSO regression model. All nine radiomic features were texture-associated (e.g. sum average and variance). The predictive efficiencies measured by the area under the curve were 94.0 %, 92.5 % and 72.5 % in the training, validation and external-validation sets, respectively. The overall correlations between the nine radiomic features were low in both TCGA and CGGA databases.ConclusionsUsing radiomic analysis, we achieved efficient prediction of ATRX genotype in lower-grade gliomas, and our model was effective in two independent databases.Key Points• ATRX in lower-grade gliomas could be predicted using radiomic analysis. • The LASSO regression algorithm and SVM performed well in radiomic analysis. • Nine radiomic features were screened as an ATRX-predictive radiomic signature. • The machine-learning model for ATRX-prediction was validated by an independent database.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.