• European radiology · Aug 2020

    Comparative Study

    Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods.

    • Xinhui Wang, Qi Wan, Houjin Chen, Yanfeng Li, and Xinchun Li.
    • School of Electronic and Information Engineering, Beijing Jiaotong University, Shangyuan Village No 3 in Haidian, Beijing, China.
    • Eur Radiol. 2020 Aug 1; 30 (8): 4595-4605.

    ObjectivesWe develop and validate a radiomics model based on multiparametric magnetic resonance imaging (MRI) in the classification of the pulmonary lesion and identify optimal machine learning methods.Materials And MethodsThis retrospective analysis included 201 patients (143 malignancies, 58 benign lesions). Radiomics features were extracted from multiparametric MRI, including T2-weighted imaging (T2WI), T1-weighted imaging (TIWI), and apparent diffusion coefficient (ADC) map. Three feature selection methods, including recursive feature elimination (RFE), t test, and least absolute shrinkage and selection operator (LASSO), and three classification methods, including linear discriminate analysis (LDA), support vector machine (SVM), and random forest (RF) were used to distinguish benign and malignant pulmonary lesions. Performance was compared by AUC, sensitivity, accuracy, precision, and specificity. Analysis of performance differences in three randomly drawn cross-validation sets verified the stability of the results.ResultsFor most single MR sequences or combinations of multiple MR sequences, RFE feature selection method with SVM classifier had the best performance, followed by RFE with RF. The radiomics model based on multiple sequences showed a higher diagnostic accuracy than single sequence for every machine learning method. Using RFE with SVM, the joint model of T1WI, T2WI, and ADC showed the highest performance with AUC = 0.88 ± 0.02 (sensitivity 83%; accuracy 82%; precision 91%; specificity 79%) in test set.ConclusionQuantitative radiomics features based on multiparametric MRI have good performance in differentiating lung malignancies and benign lesions. The machine learning method of RFE with SVM is superior to the combination of other feature selection and classifier methods.Key Points• Radiomics approach has the potential to distinguish between benign and malignant pulmonary lesions. • Radiomics model based on multiparametric MRI has better performance than single-sequence models. • The machine learning methods RFE with SVM perform best in the current cohort.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…