• Pain · Sep 2000

    Functional magnetic resonance imaging in rats subjected to intense electrical and noxious chemical stimulation of the forepaw.

    • U I Tuor, K Malisza, T Foniok, R Papadimitropoulos, M Jarmasz, R Somorjai, and P Kozlowski.
    • Biosystems, Institute for Biodiagnostics, National Research Council, 435 Ellice Avenue, Winnipeg, Manitoba, R3B 1Y6, Canada MR Technology, Institute for Biodiagnostics, National Research Council, 435 Ellice Avenue, Winnipeg, Manitoba, R3B 1Y6, Canada Informatics, Institute for Biodiagnostics, National Research Council, 435 Ellice Avenue, Winnipeg, Manitoba, R3B 1Y6, Canada.
    • Pain. 2000 Sep 1; 87 (3): 315-324.

    AbstractWe examined whether cerebral activation to two different intense and painful stimuli could be detected using functional magnetic resonance imaging (fMRI) in alpha-chloralose anesthetized rats. Experiments were performed using a 9.4 T magnet and a surface coil centered over the forebrain. A set of gradient echo images were acquired and analyzed using our software based on fuzzy cluster analysis (EvIdent). Following the injection of 50 microl of formalin (5%) into the forepaw we observed a regional increase in signal intensity in the MR images in all animals. Anterior cingulate cortex, frontal cortex and sensory-motor cortex were some of the regions that activated frequently and often bilaterally. Surprisingly, activation appeared sequentially, often occurring first in either the right or the left hemisphere with a separation of seconds to minutes between peak activations. Morphine pre-treatment (1 mg/kg, i. v.) delayed and/or reduced the intensity of the activation resulting in a decrease in the overall response. Following episodes of intense electrical stimulation, produced by two brief stimulations (15 V, 0. 3 ms, 3 Hz) of the forepaw, activation was observed consistently in the sensory-motor cortex contralateral to the stimulation. Activation also occurred frequently in the anterior cingulate cortex, ipsilateral sensory-motor cortex and frontal cortical regions. All these regions of activation were markedly reduced during nitrous oxide inhalation. Treatment with morphine resulted in an inhibition of the activation response to electrical stimulation in most regions except for sensory-motor cortex. Thus, electrical and chemical noxious stimuli activated regions that are known to be involved in the central processing of pain and morphine modified the activation observed. fMRI combined with appropriate exploratory data analysis tools could provide an effective new tool with which to study novel analgesics and their effects on the CNS processing of pain in animal models.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…