• Eur J Radiol · Jul 2020

    A Radiomics nomogram for predicting bone metastasis in newly diagnosed prostate cancer patients.

    • Wenjie Zhang, Ning Mao, Yongsheng Wang, Haizhu Xie, Shaofeng Duan, Xuexi Zhang, and Bin Wang.
    • School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong, 264000, PR China.
    • Eur J Radiol. 2020 Jul 1; 128: 109020.

    PurposeTo establish and validate a radiomics nomogram for predicting bone metastasis (BM) in patients with newly diagnosed prostate cancer (PCa).MethodOne-hundred and sixteen patients (training cohort: n = 81; validation cohort: n = 35) who underwent prostate MR imaging and confirmed by pathology with newly diagnosed PCa from January 2014 to January 2019 were enrolled. Radiomic features were extracted from diffusion-weighted, axial T2-weighted fat suppression, and dynamic contrast-enhanced T1-weighted MRI of each patient. Dimension reduction, feature selection, and radiomics feature construction were performed using the least absolute shrinkage and selection operator (LASSO) regression. Combined with independent clinical risk factors, a multivariate logistic regression model was used to establish a radiomics nomogram. Nomogram calibration and discrimination were evaluated in training cohort and verified in the validation cohort. Finally, the clinical usefulness of the nomogram was estimated through decision curve analysis (DCA).ResultsRadiomics signature consisting of 12 selected features was significantly correlated with bone status (P < 0.001 for both training and validation sets). The radiomics nomogram combined a radiomics signature from multiparametric MR images with independent clinic risk factors. The model showed good discrimination and calibration in the training cohort (AUC 0.93, 95% CI, 0.86 to 0.99) and the validation cohort (AUC 0.92, 95% CI, 0.84 to 0.99). DCA also demonstrated the clinical use of the radiomics model.ConclusionThe radiomics nomogram, which incorporates the multiparametric MRI-based radiomics signature and clinical risk factors, can be conveniently used to promote individualized prediction of BM in patients with newly diagnosed PCa.Copyright © 2020 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…