• J. Comp. Neurol. · Apr 1993

    GABAergic regulation of noradrenergic spinal projection neurons of the A5 cell group in the rat: an electron microscopic analysis.

    • G C Kwiat, H Liu, A M Williamson, and A I Basbaum.
    • Keck Center for Integrative Neuroscience, University of California San Francisco 94143.
    • J. Comp. Neurol. 1993 Apr 22; 330 (4): 557-70.

    AbstractRecent studies have demonstrated an important contribution of the A5 noradrenergic cell group of the rostral medulla in the regulation of nociceptive messages at the level of the spinal cord. These noradrenergic controls parallel those arising from the serotonin-containing neurons of the nucleus raphe magnus. In the present study, we used postembedding immunogold staining to identify GABA-immunoreactive terminals that synapse upon identified spinally projecting noradrenergic neurons of the A5 cell group in the rat. A5 projection neurons were identified by Fluoro-Gold transport from the spinal cord; sections containing retrogradely labelled cells were then immunoreacted for tyrosine hydroxylase (TH) to identify the catecholamine-containing, presumed noradrenergic, neurons. Double-labelled A5 cells were intracellularly filled with Lucifer Yellow (LY) and then the LY was photo-oxidized to an electron-dense product. Seven intracellularly filled TH-immunoreactive projection neurons were studied with postembedding immunocytochemistry. Each A5 neuron received a significant GABA-immunoreactive terminal input. Out of a pooled total of 151 terminal profiles found in apposition to intracellularly labelled somatic and dendritic profiles, 31 (20.5%) were GABA-immunoreactive. The proportion of GABA-immunoreactive terminals that contacted somatic profiles (12/72; 17%) was similar to the proportion that contacted TH-labelled dendritic profiles (19/79; 24%). There was a discernible synaptic specialization in about 50% of the labelled terminals that contacted the TH projection neuron. Both symmetric and asymmetric synaptic specializations were found. Labelled terminals contained round or pleiomorphic vesicles, but not flat vesicles; many also contained dense-core vesicles. Our results indicate that noradrenergic neurons of the A5 cell group, which contribute to both antinociceptive and cardiovascular controls through their projection to the spinal cord, are regulated by local GABAergic, presumably inhibitory, mechanisms. Whether the initiation of A5 neuron activity results from a lifting of tonic GABAergic inhibitory control, as has been proposed for the neurons of the nucleus raphe magnus, remains to be determined.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.