• BMC medical imaging · Mar 2019

    Multi-parametric effect in predicting tumor histological grade by using susceptibility weighted magnetic resonance imaging in tongue squamous cell carcinoma.

    • Xing Yang, Jinyu Zhu, Yongming Dai, Zhen Tian, Gongxin Yang, Huimin Shi, Yingwei Wu, and Xiaofeng Tao.
    • Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China.
    • BMC Med Imaging. 2019 Mar 12; 19 (1): 24.

    BackgroundSusceptibility weighted imaging (SWI) is helpful for depicting hemorrhage, calcification, and increased vascularity in some neoplasms, which may reflect tumor grade. In this study, we aimed to apply SWI in patients with oral tongue squamous cell carcinomas (OTSCCs) and relate multi-parametric effect to tumor histological grade prediction.MethodsPreoperative MR examinations were performed on a 1 .5T MRI scanner with T1-, T2- and contrast-enhanced (CE) T1-weighted imaging. In addition to routine head and neck MRI sequences, SWI was performed. Tumor thickness and volume were measured. Intratumoral susceptibility signal intensities (ITSSs), ITSS score and ITSS ratio on SWI were evaluated and recorded. Subjects were sub-grouped into low- and high-grade according to the histological findings post operation. Parameters such as tumor thickness, tumor volume and three ITSS related parameters were compared between low- and high-grade groups. ROC analysis was performed on above parameters to access the capability in predicting tumor histological grade. Different multi-parametric models were run to access multi-parametric combination effect.ResultsThirty patients with OTSCC were finally included in the study. Twenty of them were categorized as low-grade SCC and the other ten subjects were high-grade SCC according to the pathologic findings. No significant difference was seen for tumor thickness or tumor volume between two sub-groups. ITSSs were seen in 23/30 patients. Significant difference of ITSS scores between low- and high-grade OTSCCs was observed, with mean value of 0.95 ± 0.83 and 1.70 ± 0.95, respectively. Univariate ROC analysis demonstrated ITSSs, ITSS score and ITSS ratio were valuable parameters for predicting tumor histological grade and ITSSs was superior to the other two parameters, with an area under ROC curve of 0.790. Multi-parametric model using combination of ITSSs and tumor thickness would greatly improve the predictive capability in comparison with a univariate approach, yielding the area under ROC curve of 0.84(0.69,0.99). On contrast-enhanced SWI (CE-SWI), ITSSs were shown more clearly delineated in comparison with non-contrast enhanced SWI.ConclusionsIn conclusion, SWI was superior in depiction of internal characteristics of OTSCCs, which would potentially provide more diagnostic information. Multi-parametric model using combination of ITSSs and tumor thickness would be valuable in predicting tumor histological grade.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.