-
Meta Analysis
Methodological assessment of systematic reviews and meta-analyses on COVID-19: A meta-epidemiological study.
- Kristine J Rosenberger, Chang Xu, and Lifeng Lin.
- Department of Statistics, Florida State University, Tallahassee, Florida, USA.
- J Eval Clin Pract. 2021 Oct 1; 27 (5): 112311331123-1133.
Rationale, Aims, And ObjectivesCOVID-19 has caused an ongoing public health crisis. Many systematic reviews and meta-analyses have been performed to synthesize evidence for better understanding this new disease. However, some concerns have been raised about rapid COVID-19 research. This meta-epidemiological study aims to methodologically assess the current systematic reviews and meta-analyses on COVID-19.MethodsWe searched in various databases for systematic reviews with meta-analyses published between 1 January 2020 and 31 October 2020. We extracted their basic characteristics, data analyses, evidence appraisal, and assessment of publication bias and heterogeneity.ResultsWe identified 295 systematic reviews on COVID-19. The median time from submission to acceptance was 33 days. Among these systematic reviews, 73.9% evaluated clinical manifestations or comorbidities of COVID-19. Stata was the most used software programme (43.39%). The odds ratio was the most used effect measure (34.24%). Moreover, 28.14% of the systematic reviews did not present evidence appraisal. Among those reporting the risk of bias results, 14.64% of studies had a high risk of bias. Egger's test was the most used method for assessing publication bias (38.31%), while 38.66% of the systematic reviews did not assess publication bias. The I2 statistic was widely used for assessing heterogeneity (92.20%); many meta-analyses had high values of I2 . Among the meta-analyses using the random-effects model, 75.82% did not report the methods for model implementation; among those meta-analyses reporting implementation methods, the DerSimonian-Laird method was the most used one.ConclusionsThe current systematic reviews and meta-analyses on COVID-19 might suffer from low transparency, high heterogeneity, and suboptimal statistical methods. It is recommended that future systematic reviews on COVID-19 strictly follow well-developed guidelines. Sensitivity analyses may be performed to examine how the synthesized evidence might depend on different methods for appraising evidence, assessing publication bias, and implementing meta-analysis models.© 2021 John Wiley & Sons Ltd.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.