• J Eval Clin Pract · Aug 2022

    Improvements to PTSD quality metrics with natural language processing.

    • Brian Shiner, Maxwell Levis, Vincent M Dufort, Olga V Patterson, Bradley V Watts, Scott L DuVall, Carey J Russ, and Shira Maguen.
    • Veterans Affairs Medical Center, White River Junction, Vermont, USA.
    • J Eval Clin Pract. 2022 Aug 1; 28 (4): 520-530.

    Rationale Aims And ObjectivesAs quality measurement becomes increasingly reliant on the availability of structured electronic medical record (EMR) data, clinicians are asked to perform documentation using tools that facilitate data capture. These tools may not be available, feasible, or acceptable in all clinical scenarios. Alternative methods of assessment, including natural language processing (NLP) of clinical notes, may improve the completeness of quality measurement in real-world practice. Our objective was to measure the quality of care for a set of evidence-based practices using structured EMR data alone, and then supplement those measures with additional data derived from NLP.MethodAs a case example, we studied the quality of care for posttraumatic stress disorder (PTSD) in the United States Department of Veterans Affairs (VA) over a 20-year period. We measured two aspects of PTSD care, including delivery of evidence-based psychotherapy (EBP) and associated use of measurement-based care (MBC), using structured EMR data. We then recalculated these measures using additional data derived from NLP of clinical note text.ResultsThere were 2 098 389 VA patients with a diagnosis of PTSD between 2000 and 2019, 72% (n = 1 515 345) of whom had not previously received EBP for PTSD and were treated after a 2015 mandate to document EBP using templates that generate structured EMR data. Using structured EMR data, we determined that 3.2% (n = 48 004) of those patients met our EBP for PTSD quality standard between 2015 and 2019, and 48.1% (n = 23 088) received associated MBC. With the addition of NLP-derived data, estimates increased to 4.1% (n = 62 789) and 58.0% (n = 36 435), respectively.ConclusionHealthcare quality data can be significantly improved by supplementing structured EMR data with NLP-derived data. By using NLP, health systems may be able to fill the gaps in documentation when structured tools are not yet available or there are barriers to using them in clinical practice.Published 2021. This article is a U.S. Government work and is in the public domain in the USA.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…