• Clinical radiology · Jan 2021

    Tumour texture features from preoperative CT predict high-risk disease in endometrial cancer.

    • S Ytre-Hauge, Ø O Salvesen, C Krakstad, J Trovik, and I S Haldorsen.
    • Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Section for Radiology, Department of Clinical Medicine, University of Bergen, Norway. Electronic address: sigmund78@gmail.com.
    • Clin Radiol. 2021 Jan 1; 76 (1): 79.e13-79.e20.

    BackgroundTo enable more individualised treatment of endometrial cancer, improved methods for preoperative tumour characterization are warranted. Texture analysis is a method for quantification of heterogeneity in images, increasingly reported as a promising diagnostic tool in oncological imaging, but largely unexplored in endometrial cancer AIM: To explore whether tumour texture features from preoperative computed tomography (CT) are related to known prognostic histopathological features and to outcome in endometrial cancer patients.Materials And MethodsPreoperative pelvic contrast-enhanced CT was performed in 155 patients with histologically confirmed endometrial cancer. Tumour ROIs were manually drawn on the section displaying the largest cross-sectional tumour area, using dedicated texture analysis software. Using the filtration-histogram technique, the following texture features were calculated: mean, standard deviation, entropy, mean of positive pixels (MPP), skewness, and kurtosis. These imaging markers were evaluated as predictors of histopathological high-risk features and recurrence- and progression-free survival using multivariable logistic regression and Cox regression analysis, including models adjusting for high-risk status based on preoperative biopsy, magnetic resonance imaging (MRI) findings, and age.ResultsHigh tumour entropy independently predicted deep myometrial invasion (odds ratio [OR] 3.7, p=0.008) and cervical stroma invasion (OR 3.9, p=0.02). High value of MPP (MPP5 >24.2) independently predicted high-risk histological subtype (OR 3.7, p=0.01). Furthermore, high tumour kurtosis tended to independently predict reduced recurrence- and progression-free survival (HR 1.1, p=0.06).ConclusionCT texture analysis yields promising imaging markers in endometrial cancer and may supplement other imaging techniques in providing a more refined preoperative risk assessment that may ultimately enable better tailored treatment strategies.Copyright © 2020 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.