• La Radiologia medica · Jun 2019

    Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer.

    • Hamid Abdollahi, Bahram Mofid, Isaac Shiri, Abolfazl Razzaghdoust, Afshin Saadipoor, Arash Mahdavi, Hassan Maleki Galandooz, and Seied Rabi Mahdavi.
    • Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
    • Radiol Med. 2019 Jun 1; 124 (6): 555-567.

    ObjectiveTo develop different radiomic models based on the magnetic resonance imaging (MRI) radiomic features and machine learning methods to predict early intensity-modulated radiation therapy (IMRT) response, Gleason scores (GS) and prostate cancer (Pca) stages.MethodsThirty-three Pca patients were included. All patients underwent pre- and post-IMRT T2-weighted (T2 W) and apparent diffusing coefficient (ADC) MRI. IMRT response was calculated in terms of changes in the ADC value, and patients were divided as responders and non-responders. A wide range of radiomic features from different feature sets were extracted from all T2 W and ADC images. Univariate radiomic analysis was performed to find highly correlated radiomic features with IMRT response, and a paired t test was used to find significant features between responders and non-responders. To find high predictive radiomic models, tenfold cross-validation as the criterion for feature selection and classification was applied on the pre-, post- and delta IMRT radiomic features, and area under the curve (AUC) of receiver operating characteristics was calculated as model performance value.ResultsOf 33 patients, 15 patients (45%) were found as responders. Univariate analysis showed 20 highly correlated radiomic features with IMRT response (20 ADC and 20 T2). Two and fifteen T2 and ADC radiomic features were found as significant (P-value ≤ 0.05) features between responders and non-responders, respectively. Several cross-combined predictive radiomic models were obtained, and post-T2 radiomic models were found as high predictive models (AUC 0.632) followed by pre-ADC (AUC 0.626) and pre-T2 (AUC 0.61). For GS prediction, T2 W radiomic models were found as more predictive (mean AUC 0.739) rather than ADC models (mean AUC 0.70), while for stage prediction, ADC models had higher prediction performance (mean AUC 0.675).ConclusionsRadiomic models developed by MR image features and machine learning approaches are noninvasive and easy methods for personalized prostate cancer diagnosis and therapy.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.