• Neurology · May 2019

    Observational Study

    Quantitative EEG predicts outcomes in children after cardiac arrest.

    • Seungha Lee, Xuelong Zhao, Kathryn A Davis, Alexis A Topjian, Brian Litt, and Nicholas S Abend.
    • From the Department of Bioengineering (S.L., X.Z., B.L.), The University of Pennsylvania; Department of Neurology (K.A.D., B.L., N.S.A.), Perelman School of Medicine at the University of Pennsylvania; and the Departments of Pediatrics (N.S.A.) and Anesthesia and Critical Care Medicine (A.A.T., N.S.A.), Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia.
    • Neurology. 2019 May 14; 92 (20): e2329-e2338.

    ObjectiveTo determine whether quantitative EEG (QEEG) features predict neurologic outcomes in children after cardiac arrest.MethodsWe performed a single-center prospective observational study of 87 consecutive children resuscitated and admitted to the pediatric intensive care unit after cardiac arrest. Full-array conventional EEG data were obtained as part of clinical management. We computed 8 QEEG features from 5-minute epochs every hour after return of circulation. We developed predictive models utilizing random forest classifiers trained on patient age and 8 QEEG features to predict outcome. The features included SD of each EEG channel, normalized band power in alpha, beta, theta, delta, and gamma wave frequencies, line length, and regularity function scores. We measured outcomes using Pediatric Cerebral Performance Category (PCPC) scores. We evaluated the models using 5-fold cross-validation and 1,000 bootstrap samples.ResultsThe best performing model had a 5-fold cross-validation accuracy of 0.8 (0.88 area under the receiver operating characteristic curve). It had a positive predictive value of 0.79 and a sensitivity of 0.84 in predicting patients with favorable outcomes (PCPC score of 1-3). It had a negative predictive value of 0.8 and a specificity of 0.75 in predicting patients with unfavorable outcomes (PCPC score of 4-6). The model also identified the relative importance of each feature. Analyses using only frontal electrodes did not differ in prediction performance compared to analyses using all electrodes.ConclusionsQEEG features can standardize EEG interpretation and predict neurologic outcomes in children after cardiac arrest.© 2019 American Academy of Neurology.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.