• Investigative radiology · Jul 2009

    Effects of magnetic resonance image interpolation on the results of texture-based pattern classification: a phantom study.

    • Marius E Mayerhoefer, Pavol Szomolanyi, Daniel Jirak, Andreas Berg, Andrzej Materka, Albert Dirisamer, and Siegfried Trattnig.
    • Department of Radiology, MR Center, Medical University of Vienna, Vienna, Austria. marius.mayerhoefer@meduniwien.ac.at
    • Invest Radiol. 2009 Jul 1; 44 (7): 405-11.

    ObjectivesTo (1) determine whether magnetic resonance (MR) image interpolation at the pixel or k-space level can improve the results of texture-based pattern classification, and (2) compare the effects of image interpolation on texture features of different categories, with regard to their ability to distinguish between different patterns.Materials And MethodsWe obtained T2-weighted, multislice multiecho MR images of 2 sets of each 3 polystyrene spheres and agar gel (PSAG) phantoms with different nodular patterns (sphere diameter: PSAG-1, 0.8-1.25 mm; PSAG-2, 1.25-2.0 mm; PSAG-3, 2.0-3.15 mm), using a 3.0 Tesla scanner equipped with a dedicated microimaging gradient insert. Image datasets, which consisted of 20 consecutive axial slices each, were obtained with a constant field of view (30 x 30 mm(2)), but with variations of matrix size (MTX): 16 x 16; 32 x 32; 64 x 64; 128 x 128; and 256 x 256. Original images were interpolated to higher matrix sizes (up to 256 x 256) by means of linear and cubic B-spline (pixel level) as well as zero-fill (k-space level) interpolation. For both original and interpolated image datasets, texture features derived from the co-occurrence (COC) and run-length matrix (RUN), absolute gradient (GRA), autoregressive model, and wavelet transform (WAV) were calculated independently. Based on the 3 best texture features of each category, as determined by calculation of Fisher coefficients using images from the first set of PSAG phantoms (training dataset), k-means clustering was performed to separate PSAG-1, PSAG-2, and PSAG-3 images belonging to the second set of phantoms (test dataset). This was done independently for all original and interpolated image datasets. Rates of misclassified data vectors were used as primary outcome measures.ResultsFor images based on a very low original resolution (MTX = 16 x 16), misclassification rates remained high, despite the use of interpolation. For higher resolution images (MTX = 32 x 32 and 64 x 64), interpolation enhanced the ability of texture features, in all categories except WAV, to discriminate between the 3 phantoms. This positive effect was particularly pronounced for COC and RUN features, and to a lesser degree, also GRA features. No consistent improvements, and even some negative effects, were observed for WAV features, after interpolation. Although there was no clear superiority of any single interpolation techniques at very low resolution (MTX = 16 x 16), zero-fill interpolation outperformed the two pixel interpolation techniques, for images based on higher original resolutions (MTX = 32 x 32 and 64 x 64). We observed the most considerable improvements after interpolation by a factor of 2 or 4.ConclusionsMR image interpolation has the potential to improve the results of pattern classification, based on COC, RUN, and GRA features. Unless spatial resolution is very poor, zero-filling is the interpolation technique of choice, with a recommended maximum interpolation factor of 4.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.