-
J Magn Reson Imaging · Apr 2019
Radiomics Analysis of Multiparametric MRI Evaluates the Pathological Features of Cervical Squamous Cell Carcinoma.
- Qingxia Wu, Dapeng Shi, Shewei Dou, Ligang Shi, Mingbo Liu, Li Dong, Xiaowan Chang, and Meiyun Wang.
- Radiological Department of Henan Provincial People's Hospital, Zhengzhou, Henan, P.R. China.
- J Magn Reson Imaging. 2019 Apr 1; 49 (4): 1141-1148.
BackgroundRobust parameters to evaluate pathological aggressiveness are needed to provide individualized therapy for cervical cancer patients.PurposeTo investigate the radiomics analysis of multiparametric MRI to evaluate tumor grade, lymphovascular space invasion (LVSI), and lymph node (LN) metastasis of cervical squamous cell carcinoma (CSCC).Study TypeRetrospective.SubjectsFifty-six patients with histopathologically confirmed CSCC.Field Strength/Sequence3T, axial T2 and T2 with fat suppression (FS), diffusion-weighted imaging (DWI) (multi-b values), axial dynamic contrast enhanced (DCE) MRI (8 sec temporal resolution).AssessmentRegions of interest were drawn around the tumor on each axial slice and fused to generate the whole tumor volume. Sixty-six radiomics features were derived from each image sequence, including axial T2 and T2 FS, ADC maps, and Ktrans , Ve , and Vp maps from DCE MRI.Statistical TestsA univariate analysis was performed to assess each parameter's association with tumor grade and the presence of lymphovascular space invasion (LVSI) and lymph node (LN) metastasis. A principal component analysis was employed for dimension reduction and to generate new discriminative valuables. Using logistic regression, a discriminative model of each parameter was built and a receiver operating characteristic curve (ROC) was generated.ResultsThe area under the ROC curve (AUC) of anatomical, diffusion, and permeability parameters in discriminating the presence of LVSI ranged from 0.659 to 0.814, with Ve showing the best discriminative value. The AUC in discriminating the presence of LN metastasis and distinguishing tumor grade ranged from 0.747 to 0.850, 0.668 to 0.757, with ADC and Ve showing the best discriminative value, respectively.Data ConclusionFunctional maps exhibit better discriminative values than anatomical images for discriminating the pathological features of CSCC, with ADC maps showing the best discrimination performance for LN metastasis and Ve maps showing the best discriminative value for LVSI and tumor grade.Level Of Evidence3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:1141-1148.© 2018 International Society for Magnetic Resonance in Medicine.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.