-
J Magn Reson Imaging · May 2013
Software for automated MRI-based quantification of abdominal fat and preliminary evaluation in morbidly obese patients.
- Gregor Thörmer, Henriette Helene Bertram, Nikita Garnov, Veronika Peter, Tatjana Schütz, Edward Shang, Matthias Blüher, Thomas Kahn, and Harald Busse.
- Department of Diagnostic and Interventional Radiology, Leipzig University Hospital, Leipzig, Germany.
- J Magn Reson Imaging. 2013 May 1; 37 (5): 1144-50.
PurposeTo present software for supervised automatic quantification of visceral and subcutaneous adipose tissue (VAT, SAT) and evaluates its performance in terms of reliability, interobserver variation, and processing time, since fully automatic segmentation of fat-fraction magnetic resonance imaging (MRI) is fast but susceptible to anatomical variations and artifacts, particularly for advanced stages of obesity.Materials And MethodsTwenty morbidly obese patients (average BMI 44 kg/m(2) ) underwent 1.5-T MRI using a double-echo gradient-echo sequence. Fully automatic analysis (FAA) required no user interaction, while supervised automatic analysis (SAA) involved review and manual correction of the FAA results by two observers. Standard of reference was provided by manual segmentation analysis (MSA).ResultsAverage processing times per patient were 6, 6+4, and 21 minutes for FAA, SAA, and MSA (P < 0.001), respectively. For VAT/SAT assessment, Pearson correlation coefficients, mean (bias), and standard deviations of the differences were R = 0.950, +0.003, and 0.043 between FAA and MSA and R = 0.981, +0.009, and 0.027 between SAA and MSA. Interobserver variation and intraclass correlation were 3.1% and 0.996 for SAA, and 6.6% and 0.986 for MSA, respectively.ConclusionThe presented supervised automatic approach provides a reliable option for MRI-based fat quantification in morbidly obese patients and was much faster than manual analysis.Copyright © 2012 Wiley Periodicals, Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.