-
IEEE Trans Med Imaging · May 2005
Comparative StudyDirect reconstruction of kinetic parameter images from dynamic PET data.
- M E Kamasak, C A Bouman, E D Morris, and K Sauer.
- School of Electrical and Computer Engineering, Purdue University, 1285 EE Building, PO 268, West Lafayette, IN 47907, USA. kamasak@purdue.edu
- IEEE Trans Med Imaging. 2005 May 1; 24 (5): 636-50.
AbstractOur goal in this paper is the estimation of kinetic model parameters for each voxel corresponding to a dense three-dimensional (3-D) positron emission tomography (PET) image. Typically, the activity images are first reconstructed from PET sinogram frames at each measurement time, and then the kinetic parameters are estimated by fitting a model to the reconstructed time-activity response of each voxel. However, this "indirect" approach to kinetic parameter estimation tends to reduce signal-to-noise ratio (SNR) because of the requirement that the sinogram data be divided into individual time frames. In 1985, Carson and Lange proposed, but did not implement, a method based on the expectation-maximization (EM) algorithm for direct parametric reconstruction. The approach is "direct" because it estimates the optimal kinetic parameters directly from the sinogram data, without an intermediate reconstruction step. However, direct voxel-wise parametric reconstruction remained a challenge due to the unsolved complexities of inversion and spatial regularization. In this paper, we demonstrate and evaluate a new and efficient method for direct voxel-wise reconstruction of kinetic parameter images using all frames of the PET data. The direct parametric image reconstruction is formulated in a Bayesian framework, and uses the parametric iterative coordinate descent (PICD) algorithm to solve the resulting optimization problem. The PICD algorithm is computationally efficient and is implemented with spatial regularization in the domain of the physiologically relevant parameters. Our experimental simulations of a rat head imaged in a working small animal scanner indicate that direct parametric reconstruction can substantially reduce root-mean-squared error (RMSE) in the estimation of kinetic parameters, as compared to indirect methods, without appreciably increasing computation.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.