-
- Yuhao Dong, Qianjin Feng, Wei Yang, Zixiao Lu, Chunyan Deng, Lu Zhang, Zhouyang Lian, Jing Liu, Xiaoning Luo, Shufang Pei, Xiaokai Mo, Wenhui Huang, Changhong Liang, Bin Zhang, and Shuixing Zhang.
- Department of Radiology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, No. 106 Zhongshan Er Road, 510080, Guangzhou, Guangdong Province, People's Republic of China.
- Eur Radiol. 2018 Feb 1; 28 (2): 582-591.
ObjectivesTo predict sentinel lymph node (SLN) metastasis in breast cancer patients using radiomics based on T2-weighted fat suppression (T2-FS) and diffusion-weighted MRI (DWI).MethodsWe enrolled 146 patients with histologically proven breast cancer. All underwent pretreatment T2-FS and DWI MRI scan. In all, 10,962 texture and four non-texture features were extracted for each patient. The 0.623 + bootstrap method and the area under the curve (AUC) were used to select the features. We constructed ten logistic regression models (orders of 1-10) based on different combination of image features using stepwise forward method.ResultsFor T2-FS, model 10 with ten features yielded the highest AUC of 0.847 in the training set and 0.770 in the validation set. For DWI, model 8 with eight features reached the highest AUC of 0.847 in the training set and 0.787 in the validation set. For joint T2-FS and DWI, model 10 with ten features yielded an AUC of 0.863 in the training set and 0.805 in the validation set.ConclusionsFull utilisation of breast cancer-specific textural features extracted from anatomical and functional MRI images improves the performance of radiomics in predicting SLN metastasis, providing a non-invasive approach in clinical practice.Key Points• SLN biopsy to access breast cancer metastasis has multiple complications. • Radiomics uses features extracted from medical images to characterise intratumour heterogeneity. • We combined T 2 -FS and DWI textural features to predict SLN metastasis non-invasively.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.