• Int J Obes (Lond) · May 2006

    Fully automated large-scale assessment of visceral and subcutaneous abdominal adipose tissue by magnetic resonance imaging.

    • T-H Liou, W P Chan, L-C Pan, P-W Lin, P Chou, and C-H Chen.
    • Community Medicine Research Center and Institute of Public Health National Yang-Ming University, Taipei, Taiwan.
    • Int J Obes (Lond). 2006 May 1; 30 (5): 844-52.

    ObjectiveTo describe and evaluate a fully automated method for characterizing abdominal adipose tissue from magnetic resonance (MR) transverse body scans.MethodsFour MR pulse sequences were applied: SE, FLAIR, STIR, and FRFSE. On 39 subjects, each abdomen was traversed by 15 contiguous transaxial images. The total abdominal adipose tissue (TAAT) was calculated from thresholds obtained by slice histogram analysis. The same thresholds were also used in the manual volume calculation of TAAT, subcutaneous abdominal adipose tissue (SAAT) and visceral abdominal adipose tissue (VAAT). Image segmentation methods, including edge detection, mathematical morphology, and knowledge-based curve fitting, were used to automatically separate SAAT from VAAT in various 'nonstandard' cases such as those with heterogeneous magnetic fields and movement artefacts.ResultsThe percentage root mean squared errors of the method for SAAT and VAAT ranged from 1.0 to 2.7% for the four sequences. It took approximately 7 and 15 min to complete the 15-slice volume estimation of the three adipose tissue classes using automated and manual methods, respectively.ConclusionThe results demonstrate that the proposed method is robust and accurate. Although the separation of SAAT and VAAT is not always perfect, this method could be especially helpful in dealing with large amounts of data such as in epidemiological studies.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.