• IEEE Trans Biomed Eng · Aug 2007

    Estimation of the hemodynamic response of fMRI Data using RBF neural network.

    • Huaien Luo and Sadasivan Puthusserypady.
    • Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore. g0305766@nus.edu.sg
    • IEEE Trans Biomed Eng. 2007 Aug 1; 54 (8): 1371-81.

    AbstractFunctional magnetic resonance imaging (fMRI) is an important technique for neuroimaging. The conventional system identification methods used in fMRI data analysis assume a linear time-invariant system with the impulse response described by the hemodynamic responses (HDR). However, the measured blood oxygenation level-dependent (BOLD) signals to a particular processing task (for example, rapid event-related fMRI design) show nonlinear properties and vary with different brain regions and subjects. In this paper, radial basis function (RBF) neural network (a powerful technique for modelling nonlinearities) is proposed to model the dynamics underlying the fMRI data. The equivalence of the proposed method to the existing Volterra series method has been demonstrated. It is shown that the first- and second-order Volterra kernels could be deduced from the parameters of the RBF neural network. Studies on both simulated (using Balloon model) as well as real event-related fMRI data show that the proposed method can accurately estimate the HDR of the brain and capture the variations of the HDRs as a function of the brain regions and subjects.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.