• J Magn Reson Imaging · Apr 2016

    Characterization of breast masses as benign or malignant at 3.0T MRI with whole-lesion histogram analysis of the apparent diffusion coefficient.

    • Shiteng Suo, Kebei Zhang, Mengqiu Cao, Xinjun Suo, Jia Hua, Xiaochuan Geng, Jie Chen, Zhiguo Zhuang, Xiang Ji, Qing Lu, He Wang, and Jianrong Xu.
    • Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
    • J Magn Reson Imaging. 2016 Apr 1; 43 (4): 894-902.

    PurposeTo investigate the utility of whole-lesion apparent diffusion coefficient (ADC) histogram analysis in capturing breast lesion heterogeneity and determine which ADC metric may help best differentiate benign from malignant breast mass lesions at 3.0T magnetic resonance imaging (MRI).Materials And MethodsWe retrospectively included 101 women with breast mass lesions (benign:malignant = 36:65) who underwent 3.0T diffusion-weighted imaging (DWI) and subsequently had histopathologic confirmation. ADC histogram parameters, including the mean, minimum, maximum, 10th/25th/50th/75th/90th percentile, skewness, kurtosis, and entropy ADCs, were derived for the whole-lesion volume in each patient. Mann-Whitney U-test, univariate and multivariate logistic regression, area under the receiver-operating characteristic curve (Az ), intraclass correlation coefficient (ICC), and Bland-Altman test were used for statistical analysis.ResultsMean, minimum, maximum, and 10th/25th/50th/75th/90th percentile ADCs were significantly lower (all P < 0.0001), while skewness and entropy ADCs were significantly higher (P < 0.001 and P = 0.001, respectively) in malignant lesions compared with benign ones. The Az values of minimum and 25th percentile ADCs were significantly higher than that of mean ADC (P = 0.0194 and P = 0.0154, respectively) or that of median ADC (P = 0.0300 and P = 0.0401, respectively), indicating that minimum and 25th percentile ADCs may be more accurate for lesion discrimination. Multivariate logistic regression showed that the minimum ADC was the unique independent predictor of breast malignancy. Minimum and 25th percentile ADCs had excellent interobserver agreement (ICC = 0.943 and 0.989, respectively; narrow width of 95% limits of agreement).ConclusionThese results suggest that whole-lesion ADC histogram analysis may facilitate the differentiation between benign and malignant breast mass lesions.© 2015 Wiley Periodicals, Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…