• Eur J Radiol · Jul 2019

    A deep learning radiomics model for preoperative grading in meningioma.

    • Yongbei Zhu, Chuntao Man, Lixin Gong, Di Dong, Xinyi Yu, Wang Shuo S CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Scienc, Mengjie Fang, Siwen Wang, Xiangming Fang, Xuzhu Chen, and Jie Tian.
    • School of Automation, Harbin University of Science and Technology, Heilongjiang, Harbin, 150080, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, China.
    • Eur J Radiol. 2019 Jul 1; 116: 128-134.

    ObjectivesTo noninvasively differentiate meningioma grades by deep learning radiomics (DLR) model based on routine post-contrast MRI.MethodsWe enrolled 181 patients with histopathologic diagnosis of meningioma who received post-contrast MRI preoperative examinations from 2 hospitals (99 in the primary cohort and 82 in the validation cohort). All the tumors were segmented based on post-contrast axial T1 weighted images (T1WI), from which 2048 deep learning features were extracted by the convolutional neural network. The random forest algorithm was used to select features with importance values over 0.001, upon which a deep learning signature was built by a linear discriminant analysis classifier. The performance of our DLR model was assessed by discrimination and calibration in the independent validation cohort. For comparison, a radiomic model based on hand-crafted features and a fusion model were built.ResultsThe DLR signature comprised 39 deep learning features and showed good discrimination performance in both the primary and validation cohorts. The area under curve (AUC), sensitivity, and specificity for predicting meningioma grades were 0.811(95% CI, 0.635-0.986), 0.769, and 0.898 respectively in the validation cohort. DLR performance was superior over the hand-crafted features. Calibration curves of DLR model showed good agreements between the prediction probability and the observed outcome of high-grade meningioma.ConclusionsUsing routine MRI data, we developed a DLR model with good performance for noninvasively individualized prediction of meningioma grades, which achieved a quantization capability superior over the hand-crafted features. This model has potential to guide and facilitate the clinical decision-making of whether to observe or to treat patients by providing prognostic information.Copyright © 2019. Published by Elsevier B.V.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…