• Eur. J. Nucl. Med. Mol. Imaging · Mar 2005

    Quantitation of dopamine transporter blockade by methylphenidate: first in vivo investigation using [123I]FP-CIT and a dedicated small animal SPECT.

    • Susanne Nikolaus, Andreas Wirrwar, Christina Antke, Shahram Arkian, Nils Schramm, Hans-Wilhelm Müller, and Rolf Larisch.
    • Clinic of Nuclear Medicine, Heinrich-Heine University, 40225, Düsseldorf, Germany. susanne.nikolaus@uni-duesseldorf.de
    • Eur. J. Nucl. Med. Mol. Imaging. 2005 Mar 1; 32 (3): 308-13.

    PurposeThe aim of this study was to investigate the feasibility of assessing dopamine transporter binding after treatment with methylphenidate in the rat using a recently developed high-resolution small animal single-photon emission computed tomograph (TierSPECT) and [123I]FP-CIT.Methods[123I]FP-CIT was administered intravenously 1 h after intraperitoneal injection of methylphenidate (10 mg/kg) or vehicle. Animals underwent scanning 2 h after radioligand administration. The striatum was identified by superimposition of [123I]FP-CIT scans with bone metabolism and perfusion scans obtained with 99mTc-DPD and 99mTc-tetrofosmin, respectively. As these tracers do not pass the blood-brain barrier, their distribution permits the identification of extracerebral anatomical landmarks such as the orbitae and the harderian glands. The cerebellum was identified by superimposing [123I]FP-CIT scans with images of brain perfusion obtained with 99mTc-HMPAO.ResultsMethylphenidate-treated animals and vehicle-treated animals yielded striatal equilibrium ratios (V''3) of 0.24+/-0.26 (mean +/- SD) and 1.09+/-0.42, respectively (t test, two-tailed, p<0.0001). Cortical V''3 values amounted to 0.05+/-0.28 (methylphenidate) and 0.3+/-0.39 (saline, p=0.176). This first in vivo study of rat dopamine transporter binding after pre-treatment with methylphenidate showed a mean reduction of 78% in striatal [123I]FP-CIT accumulation.ConclusionThe results can be interpreted in terms of a pharmacological blockade in the rat striatum and show that in vivo quantitation of dopamine transporter binding is feasible with [123I]FP-CIT and the TierSPECT. This may be of future relevance for in vivo investigations on rat models of attention deficit/hyperactivity disorder. Furthermore, our findings suggest that investigations in other animal models, e.g. of Parkinson's and Huntington's disease, may be feasible using SPECT radioligands and small animal imaging systems.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.